
在工作和生活中我们用Python处理数据的情况并不少见,而且很多情况是从数据库取数据,比如MySQL,这里我来分享下简单的Python操作MySQL的库pymysql。
安装与应用
适用环境
python版本 >=2.6或3.3
mysql版本>=4.1
安装
可以使用pip安装也可以手动下载安装。
使用pip安装,在命令行执行如下命令:
pip install PyMySQL(大写不行换小写)
手动安装,请先下载。下载地址:https://github.com/PyMySQL/PyMySQL/tarball/pymysql-X.X。
其中的X.X是版本(目前可以获取的最新版本是0.7.6)。
下载后解压压缩包。在命令行中进入解压后的目录,执行如下的指令:
python setup.py install
建议使用pip安装。
使用示例
连接数据库如下:
import pymysql.cursors
config = {
'host':'127.0.0.1',
'port':3306,
'user':'root',
'password':'zhyea.com',
'db':'employees',
'charset':'utf8mb4',
'cursorclass':pymysql.cursors.DictCursor,
}
# Connect to the database
connection = pymysql.connect(**config)
插入数据:
执行sql语句前需要获取cursor,因为配置默认自动提交,故在执行sql语句后需要主动commit,最后不要忘记关闭连接:
from datetime import date, datetime, timedelta
import pymysql.cursors
#连接配置信息
config = {
'host':'127.0.0.1',
'port':3306,
'user':'root',
'password':'zhyea.com',
'db':'employees',
'charset':'utf8mb4',
'cursorclass':pymysql.cursors.DictCursor,
}
# 创建连接
connection = pymysql.connect(**config)
# 获取明天的时间
tomorrow = datetime.now().date() + timedelta(days=1)
# 执行sql语句
try:
with connection.cursor() as cursor:
# 执行sql语句,插入记录
sql = 'INSERT INTO employees (first_name, last_name, hire_date, gender, birth_date) VALUES (%s, %s, %s, %s, %s)'
cursor.execute(sql, ('Robin', 'Zhyea', tomorrow, 'M', date(1989, 6, 14)));
# 没有设置默认自动提交,需要主动提交,以保存所执行的语句
connection.commit()
finally:
connection.close();
执行查询:
import datetime
import pymysql.cursors
#连接配置信息
config = {
'host':'127.0.0.1',
'port':3306,
'user':'root',
'password':'zhyea.com',
'db':'employees',
'charset':'utf8mb4',
'cursorclass':pymysql.cursors.DictCursor,
}
# 创建连接
connection = pymysql.connect(**config)
# 获取雇佣日期
hire_start = datetime.date(1999, 1, 1)
hire_end = datetime.date(2016, 12, 31)
# 执行sql语句
try:
with connection.cursor() as cursor:
# 执行sql语句,进行查询
sql = 'SELECT first_name, last_name, hire_date FROM employees WHERE hire_date BETWEEN %s AND %s'
cursor.execute(sql, (hire_start, hire_end))
# 获取查询结果
result = cursor.fetchone()
print(result)
# 没有设置默认自动提交,需要主动提交,以保存所执行的语句
connection.commit()
finally:
connection.close();
这里的查询只取了一条查询结果,查询结果以字典的形式返回:
result = cursor.fetchmany(2)
不过不建议这样使用,最好在sql语句中设置查询的记录总数。获取全部结果集可以使用fetchall方法:
result = cursor.fetchall()
因为只有两条记录,所以上面提到的这两种查询方式查到的结果是一样的:
[{‘last_name’: ‘Vanderkelen’, ‘hire_date’: datetime.date(2015, 8, 12), ‘first_name’: ‘Geert’}, {‘last_name’: ‘Zhyea’, ‘hire_date’: datetime.date(2015, 8, 21), ‘first_name’: ‘Robin’}]
在django中使用
在django中使用是我找这个的最初目的。目前同时支持python3.4、django1.8的数据库backend并不好找。这个是我目前找到的最好用的。
设置DATABASES和官方推荐使用的MySQLdb的设置没什么区别:
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.mysql',
'NAME': 'mytest',
'USER': 'root',
'PASSWORD': 'zhyea.com',
'HOST': '127.0.0.1',
'PORT': '3306',
}
}
关键是这里:我们还需要在站点的__init__.py文件中添加如下的内容:
import pymysql
pymysql.install_as_MySQLdb()
以上就是Python中pymysql库的简单使用,谢谢。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01