
R语言实现数据操作
1.选择与查看数据
#选定数据
>data(iris)
#查看数据,按列展开,观测数据类型
>str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
#按列展开,进行数据统计观测
>summary(iris)
Sepal.Length Sepal.Width
Min. :4.300 Min. :2.000
1st Qu.:5.100 1st Qu.:2.800
Median :5.800 Median :3.000
Mean :5.843 Mean :3.057
3rd Qu.:6.400 3rd Qu.:3.300
Max. :7.900 Max. :4.400
Petal.Length Petal.Width
Min. :1.000 Min. :0.100
1st Qu.:1.600 1st Qu.:0.300
Median :4.350 Median :1.300
Mean :3.758 Mean :1.199
3rd Qu.:5.100 3rd Qu.:1.800
Max. :6.900 Max. :2.500
Species
setosa :50
versicolor:50
virginica :50
#按行展开,查看前10行
>head(iris,10) Sepal.Length Sepal.Width Petal.Length
1 5.1 3.5 1.4
2 4.9 3.0 1.4
3 4.7 3.2 1.3
4 4.6 3.1 1.5
5 5.0 3.6 1.4
6 5.4 3.9 1.7
7 4.6 3.4 1.4
8 5.0 3.4 1.5
9 4.4 2.9 1.4
10 4.9 3.1 1.5
Petal.Width Species
1 0.2 setosa
2 0.2 setosa
3 0.2 setosa
4 0.2 setosa
5 0.2 setosa
6 0.4 setosa
7 0.3 setosa
8 0.2 setosa
9 0.2 setosa
10 0.1 setosa
#按行展开,观测后10行
>tail(iris,10)
Sepal.Length Sepal.Width Petal.Length
141 6.7 3.1 5.6
142 6.9 3.1 5.1
143 5.8 2.7 5.1
144 6.8 3.2 5.9
145 6.7 3.3 5.7
146 6.7 3.0 5.2
147 6.3 2.5 5.0
148 6.5 3.0 5.2
149 6.2 3.4 5.4
150 5.9 3.0 5.1
Petal.Width Species
141 2.4 virginica
142 2.3 virginica
143 1.9 virginica
144 2.3 virginica
145 2.5 virginica
146 2.3 virginica
147 1.9 virginica
148 2.0 virginica
149 2.3 virginica
150 1.8 virginica
#观测数据内的某一行 `
>table(iris$Sepal.Length)
4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2
1 3 1 4 2 5 6 10 9 4
5.3 5.4 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2
1 6 7 6 8 7 3 6 6 4
6.3 6.4 6.5 6.6 6.7 6.8 6.9 7 7.1 7.2
9 7 5 2 8 3 4 1 1 3
7.3 7.4 7.6 7.7 7.9
1 1 1 4 1
#观测数据的容量
> object.size(iris)
7088 bytes
深入观测方法
#选择某一行某一列数据,一行一列
>iris[1,1]
[1] 5.1
#使用c()选择多行
> sepal.iris = iris[,c("Sepal.Length","Sepal.Width")]
> str(sepal.iris)
'data.frame': 150 obs. of 2 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#指定观测那几行的那几个
> FIVE.sepal.iris = iris[1:5,c("Sepal.Length","Sepal.Width")]
> str(FIVE.sepal.iris)
'data.frame': 5 obs. of 2 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6
#设置筛选条件,例如iris中species的仅包括setosa类型的数据,后面指定了列数
> setosa.data = iris[iris$Species=="setosa",1:5]
> str(setosa.data)
'data.frame': 50 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
#使用subset函数来获取数据集的子集
> sepal.data = subset(iris,select = c("Sepal.Length","Sepal.Width"))
> str(sepal.data)
'data.frame': 150 obs. of 2 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#subset获取仅包含setosa的数据
> setosa.data = subset(iris,Species=="setosa")
> str(setosa.data)
'data.frame': 50 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
#subset运用条件来筛选数据
> example.data = subset(iris,Petal.Length<=1.4 & Petal.Width>=0.2,select = Species )
> str(example.data)
'data.frame': 21 obs. of 1 variable:
$ Species: Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
#具有相同行相同列的数据合并为一组,
> flower.type = data.frame(Species = "setosa",Flower = "iris")
> merge(flower.type,iris[1:3,],by = "Species")
Species Flower Sepal.Length Sepal.Width Petal.Length Petal.Width
1 setosa iris 5.1 3.5 1.4 0.2
2 setosa iris 4.9 3.0 1.4 0.2
3 setosa iris 4.7 3.2 1.3 0.2
#函数order可以返回指定列进行数据排序后的数据框,下面是花萼长度从大到小排序
> head(iris[order(iris$Sepal.Length,decreasing = TRUE),])
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
132 7.9 3.8 6.4 2.0 virginica
118 7.7 3.8 6.7 2.2 virginica
119 7.7 2.6 6.9 2.3 virginica
123 7.7 2.8 6.7 2.0 virginica
136 7.7 3.0 6.1 2.3 virginica
106 7.6 3.0 6.6 2.1 virginica
扩展
#函数sub与gsub支持使用正则表达示对字符串的处理,分别替换第一个字符与所有字符
> iris10 = iris
> sub("e","z",names(iris10))
[1] "Szpal.Length" "Szpal.Width" "Pztal.Length" "Pztal.Width" "Spzcies"
> gsub("e","z",names(iris10))
[1] "Szpal.Lzngth" "Szpal.Width" "Pztal.Lzngth" "Pztal.Width" "Spzcizs"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12