制造企业如何借力工业大数据
工业大数据和原来的信息化有何区别?
简单来说,1990年代以前,大部分企业都在做企业内部信息化,这被称为第一次浪潮。1990年代以后,互联网开始席卷全球,企业相继进行互联网化。而随着信息化与工业化的深度融合,工业大数据悄然兴起,这也将成为下一个提升制造业生产力的技术前沿。在清华大学工业大数据研究中心主任王建民看来,工业大数据即第三次工业变革,它以智能互联的产品为核心载体,而不单纯只是通过互联网增值。
王建民认为,在制造业的利润越来越低的情况下,工业大数据可以帮助中国企业提高产品在使用维护阶段的利润。最重要的是,利用数据进行跨界运营,能够为企业带来新的生存空间。
利用大数据抢占价值高地
为什么工业大数据对当下的中国企业来说,有着如此深远的意义?
事实上,在王建民看来,一个复杂装备的生命周期分三个阶段,即:开发制造阶段(Beginning of Life,简称BOL)、使用维护阶段(Middle of Life,简称MOL)、回收利用阶段(即End of Life,简称EOL)。
原来,制造企业将重心放在开发制造阶段,企业的核心目标就是将装备设计制造出来。而产品售卖给消费者后,就和企业没有关系或者变得无关紧要了。所以生命周期的第二、三阶段,常常被企业忽略。但装备的价值真正体现在用户的使用体验上,而不在于制造,尽管制造由质量决定。但消费者在使用阶段的流畅程度,才能反映出产品的最终功效。
加工制造环节的确能够产生很多利润,但在当前环境下,生产制造的利润越来越薄,使企业越来越难以为继。而中国是一个制造大国,更是一个使用大国,制造业的兴衰事关重大。王建民认为,只有利用大数据抢占价值高地,实现产品智能化,才能实现从“中国制造”到“中国创造”的转变,从“生产型制造”到“服务型制造”转变,这也是“中国制造2025”战略的应有之义。
跨界运营是工业互联网转型的核心
和之前很多技术一样,工业大数据并非横空出世,而是一脉相承。但又有新的变化,这种新的变化,在王建民看来,其核心在于连接,将原来孤立的机器连接起来,将人和机器连接起来,将不同的企业、行业连接起来。
事实上,这种连接已经产生了巨大的价值,有很多企业已经开始实践了。
例如:将人和产品联系起来,可以实现产品创新。日本科研人员设计出一种新型汽车座椅,根据驾驶者的体重、压力值等数据识别主人,以判断驾驶者是否为主人,从而决定是否启动。
又例如:将两个不同领域连接起来,可以实现销售模式的创新。欧洲人可以做到今天卖明天的风电,怎么卖?他们根据一系列数据,对明天的风力精准地进行测算,从而实现当天交易。这是风电装备在整个大气环境下进行的跨界运营的绝佳案例。
还有一个例子,《哈佛商业评论》曾经发表过一篇文章叫《智慧的互联产品》。美国人认为未来的工业产品应该分为五个阶段,到第四个阶段的时候,装备、产品会进入到一个产品的系统阶段,机器和机器之间可以对话和合作。比如在农业领域,播种器械、收获器械会联合起来到一个农场去作业。而终极阶段是:农业机器的集群和天气的数据,会和种子的数据、灌溉系统的数据联合起来,通过全方位的连接来解决农业生产中的绿色节能问题。
王建民说,通过跨界运营来创新是工业互联网转型的核心。在使用阶段做一个简单的维修、更换配件,不管是预防性维修还是主动维修,都还处于工业互联网的初级阶段。只有通过数据进行跨界运营,才抓住了整个装备制造业在服务阶段转型升级的核心。
工业大数据应避免的三个误区
听上去很美好的工业大数据,如何实践呢?王建民梳理了三大误区,以供企业参考:
一、维修=运行
在工业领域,维修和运行基本不会分开。但是在工业大数据里,二者是分开的。维修指的是,当产品性能下降的时候,通过更换零件或者其他手段,恢复其产品性能。而运行是指如何使用机器,使它产生价值。
二、产业大数据等同于消费大数据
工业大数据最核心的问题在于分析结果的可靠性。在消费大数据上,如果产品的广告推荐能达到20‰的可靠性,就是搜索引擎的最好水平。但这一数据在工业领域,显然远远不够。因为在工业领域,往往是失之毫厘,差之千里。工业的应用场景对数据准确率的要求达到99.9%,甚至更高,否则就会造成严重的经济损失乃至安全事故的发生。所以,王建民建议,从人员结构上来讲,工业大数据需要数据和产业的人才一起来做。
三、采集的数据越多越好
对于企业而言,机器采集的数据有时候是一个灾难,不是企业采集的所有数据都是有用的。不产生价值的数据就是垃圾信息,对于企业而言就是负担。企业在收集数据之前,首要任务是给数据画像,弄明白自己到底需要什么样的数据。
王建民认为,无论如何,大数据仍然要围绕装备增值服务的业务逻辑,在达到这个目的的过程中,让数据发挥作用,而非简单地只看到数据,而忽略了根本的逻辑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21