
制造企业如何借力工业大数据
工业大数据和原来的信息化有何区别?
简单来说,1990年代以前,大部分企业都在做企业内部信息化,这被称为第一次浪潮。1990年代以后,互联网开始席卷全球,企业相继进行互联网化。而随着信息化与工业化的深度融合,工业大数据悄然兴起,这也将成为下一个提升制造业生产力的技术前沿。在清华大学工业大数据研究中心主任王建民看来,工业大数据即第三次工业变革,它以智能互联的产品为核心载体,而不单纯只是通过互联网增值。
王建民认为,在制造业的利润越来越低的情况下,工业大数据可以帮助中国企业提高产品在使用维护阶段的利润。最重要的是,利用数据进行跨界运营,能够为企业带来新的生存空间。
利用大数据抢占价值高地
为什么工业大数据对当下的中国企业来说,有着如此深远的意义?
事实上,在王建民看来,一个复杂装备的生命周期分三个阶段,即:开发制造阶段(Beginning of Life,简称BOL)、使用维护阶段(Middle of Life,简称MOL)、回收利用阶段(即End of Life,简称EOL)。
原来,制造企业将重心放在开发制造阶段,企业的核心目标就是将装备设计制造出来。而产品售卖给消费者后,就和企业没有关系或者变得无关紧要了。所以生命周期的第二、三阶段,常常被企业忽略。但装备的价值真正体现在用户的使用体验上,而不在于制造,尽管制造由质量决定。但消费者在使用阶段的流畅程度,才能反映出产品的最终功效。
加工制造环节的确能够产生很多利润,但在当前环境下,生产制造的利润越来越薄,使企业越来越难以为继。而中国是一个制造大国,更是一个使用大国,制造业的兴衰事关重大。王建民认为,只有利用大数据抢占价值高地,实现产品智能化,才能实现从“中国制造”到“中国创造”的转变,从“生产型制造”到“服务型制造”转变,这也是“中国制造2025”战略的应有之义。
跨界运营是工业互联网转型的核心
和之前很多技术一样,工业大数据并非横空出世,而是一脉相承。但又有新的变化,这种新的变化,在王建民看来,其核心在于连接,将原来孤立的机器连接起来,将人和机器连接起来,将不同的企业、行业连接起来。
事实上,这种连接已经产生了巨大的价值,有很多企业已经开始实践了。
例如:将人和产品联系起来,可以实现产品创新。日本科研人员设计出一种新型汽车座椅,根据驾驶者的体重、压力值等数据识别主人,以判断驾驶者是否为主人,从而决定是否启动。
又例如:将两个不同领域连接起来,可以实现销售模式的创新。欧洲人可以做到今天卖明天的风电,怎么卖?他们根据一系列数据,对明天的风力精准地进行测算,从而实现当天交易。这是风电装备在整个大气环境下进行的跨界运营的绝佳案例。
还有一个例子,《哈佛商业评论》曾经发表过一篇文章叫《智慧的互联产品》。美国人认为未来的工业产品应该分为五个阶段,到第四个阶段的时候,装备、产品会进入到一个产品的系统阶段,机器和机器之间可以对话和合作。比如在农业领域,播种器械、收获器械会联合起来到一个农场去作业。而终极阶段是:农业机器的集群和天气的数据,会和种子的数据、灌溉系统的数据联合起来,通过全方位的连接来解决农业生产中的绿色节能问题。
王建民说,通过跨界运营来创新是工业互联网转型的核心。在使用阶段做一个简单的维修、更换配件,不管是预防性维修还是主动维修,都还处于工业互联网的初级阶段。只有通过数据进行跨界运营,才抓住了整个装备制造业在服务阶段转型升级的核心。
工业大数据应避免的三个误区
听上去很美好的工业大数据,如何实践呢?王建民梳理了三大误区,以供企业参考:
一、维修=运行
在工业领域,维修和运行基本不会分开。但是在工业大数据里,二者是分开的。维修指的是,当产品性能下降的时候,通过更换零件或者其他手段,恢复其产品性能。而运行是指如何使用机器,使它产生价值。
二、产业大数据等同于消费大数据
工业大数据最核心的问题在于分析结果的可靠性。在消费大数据上,如果产品的广告推荐能达到20‰的可靠性,就是搜索引擎的最好水平。但这一数据在工业领域,显然远远不够。因为在工业领域,往往是失之毫厘,差之千里。工业的应用场景对数据准确率的要求达到99.9%,甚至更高,否则就会造成严重的经济损失乃至安全事故的发生。所以,王建民建议,从人员结构上来讲,工业大数据需要数据和产业的人才一起来做。
三、采集的数据越多越好
对于企业而言,机器采集的数据有时候是一个灾难,不是企业采集的所有数据都是有用的。不产生价值的数据就是垃圾信息,对于企业而言就是负担。企业在收集数据之前,首要任务是给数据画像,弄明白自己到底需要什么样的数据。
王建民认为,无论如何,大数据仍然要围绕装备增值服务的业务逻辑,在达到这个目的的过程中,让数据发挥作用,而非简单地只看到数据,而忽略了根本的逻辑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25