京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中字典映射类型的学习教程
字典是python语言中唯一的映射类型,用花括号{}表示,一个字典条目就是一个键值对,方法keys()返回字典的键列表,values()返回字典的值列表,items()返回字典的键值对列表。字典中的值没有任何限制,它们可以是任意python对象,但字典中的键是有类型限制的,每个键只能对应一个值,且键必须是可哈系的,所有不可变类型都是可哈希的。不可变集合frozenset的元素可作为字典的键,但可变集合set就不行了。
以下是字典类型的常用方法。
clear():删除字典中所有元素。
copy():返回字典(浅复制)的一个副本。
fromkeys(seq,val=None):创建并返回一个新字典,以seq中的元素做该字典的键,val做该字典中所有键对应的初始值。
get(key,default=None):返回字典中的键key对应的值value,如果字典中不存在此键,则返回default的值。
has_key(key):如果键key在字典中存在,返回True,否则返回False。python2.2后这个方法几乎已废弃不用了,通常用in来替代。
items():返回一个包含字典中键值对元组的列表。
keys():返回一个包含字典中键的列表。
iter():方法iteritems()、iterkeys()、itervalues()与它们对应的非迭代方法一样,不同的是它们返回一个迭代子,而不是一个列表。
pop(key[,default]):和方法get()类似,如果字典中key键存在,删除并返回dict[key],如果key键不存在,且没有给出default的值,引发KeyError异常。
setdefault(key,default=None):和方法get()相似,如果字典中不存在key键,由dict[key]=default为它赋值。
update(dict2):将字典dict2的键值对添加到当前字典中。
values():返回一个包含字典中所有值的列表。
键可以是多种类型,但键是唯一的不重复的,值可以不唯一
>>> d = {'a':1, 'b':2}
>>> d
{'b': 2, 'a': 1}
>>> L = [('Jonh',18), ('Nancy',19)]
>>> d = dict(L) #通过包含键值的列表创建
>>> d
{'Jonh': 18, 'Nancy': 19}
>>> T = tuple(L)
>>> T
(('Jonh', 18), ('Nancy', 19))
>>> d = dict(T) #通过包含键值的元组创建
>>> d
{'Jonh': 18, 'Nancy': 19}
>>> d = dict(x = 1, y = 3) #通过关键字参数创建
>>> d
{'x': 1, 'y': 3}
>>> d[3] = 'z'
>>> d
{3: 'z', 'x': 1, 'y': 3}
还有一个创建字典的方法就是 fromkeys(S [ , v]) python里的解释是 New dict with key from S and value equal to v ,即将S里的元素作为键,v作为所有键的值,v 的默认值为 None。可以通过已存在的字典 d 调用 d.fromkeys(S [, v] ) 也可以通过类型调用 dict.fromkeys( S [, v] )
>>> d
{3: 'z', 'y': 3}
>>> L1 = [1,2,3]
>>> d.fromkeys(L1)
{1: None, 2: None, 3: None}
>>> {}.fromkeys(L1,'nothing')
{1: 'nothing', 2: 'nothing', 3: 'nothing'}
>>> dict.fromkeys(L1,'over')
{1: 'over', 2: 'over', 3: 'over'}
字典是无序的,所以不能通过索引来获取值,要通过键来找到关联值。对于不存在的键,会出现错误KeyError
>>> d
{3: 'z', 'x': 1, 'y': 3}
>>> d[3]
'z'
>>> d['x']
1
>>> d[0]
Traceback (most recent call last):
File "<pyshell#26>", line 1, in <module>
d[0]
KeyError: 0
字典操作和方法:
len( d ) 返回字典d里面的键值对数目
x in d 查询字典d中是否有键 x
>>> d = {'x':1,'y':3}
>>> len(d)
2
>>> 'x' in d
True
>>> 'z' not in d
True
d [ x ] = y 若键 x 存在,则修改 x 对应的值为 y, 若键 x 不存在,则在字典 d 中增加键值对 x : y
>>> d
{'x': 1, 'y': 3}
>>> d['x'] = 1.5
>>> d
{'x': 1.5, 'y': 3}
>>> d['z'] = 5
>>> d
{'z': 5, 'x': 1.5, 'y': 3}
del d[x] 删除字典 d 中键为 x 的键值对,若 x 不存在会出现 KeyError
>>> d = {'z': 5, 'x': 1.5, 'y': 3}
>>> del d['x']
>>> d
{'z': 5, 'y': 3}
>>> del d['x']
Traceback (most recent call last):
File "<pyshell#66>", line 1, in <module>
del d['x']
KeyError: 'x'
d.clear() 清空字典d
d.copy() 对字典 d 进行浅复制,返回一个和d有相同键值对的新字典
>>> d
{'z': 5, 'y': 3}
>>> d.copy()
{'z': 5, 'y': 3}
d.get( x [ , y]) 返回字典 d 中键 x 对应的值,键 x 不存在的时候返回 y, y 的默认值为None
>>> d = {'z': 5, 'x': 1.5, 'y': 3}
>>> d.get('x')
1.5
>>> del d['x']
>>> d.get('x')
>>> d.get('x','nothing')
'nothing'
d.items() 将字典 d 中所有键值对以dict_items的形式返回(Python 2中d.iteritems() 返回一个针对键值对的迭代器对象,Python 3中没有 iteritems 方法了)
>>> d = {'z': 5, 'x': 1.5, 'y': 3}
>>> d.items()
dict_items([('z', 5), ('x', 1.5), ('y', 3)])
>>> list(d.items())
[('z', 5), ('x', 1.5), ('y', 3)]
d.keys() 将字典 d 中所有的键以dict_keys形式返回(Python 2 中d.iterkeys() 返回一个针对键的迭代器对象,Python 3 没有此语法)
>>> d.keys()
dict_keys(['z', 'x', 'y'])
>>> for x in d.keys():
print(x)
z
x
y
d.pop( x ) 返回给定键 x 对应的值,并将该键值对从字典中删除
>>> d = {'z': 5, 'x': 1.5, 'y': 3}
>>> d.pop('x')
1.5
>>> d.pop('x')
Traceback (most recent call last):
File "<pyshell#92>", line 1, in <module>
d.pop('x')
KeyError: 'x'
d.popitem( ) 返回并删除字典 d 中随机的键值对
>>> d = {'z': 5, 'x': 1.5, 'y': 3}
>>> d.popitem()
('z', 5)
>>> d.popitem()
('x', 1.5)
d.setdefault( x, [ , y ] ) 返回字典 d 中键 x 对应的值,若键 x 不存在,则返回 y, 并将 x : y 作为键值对添加到字典中,y 的默认值为 None
>>> d = {'z': 5, 'x': 1.5, 'y': 3}
>>> d.setdefault('x')
1.5
>>> del d['x']
>>> d.setdefault('x','Look!')
'Look!'
>>> d
{'z': 5, 'x': 'Look!', 'y': 3}
d.update( x ) 将字典 x 所有键值对添加到字典 d 中(不重复,重复的键值对用字典 x 中的键值对替代字典 d 中)
>>> d1 = {'x':1, 'y':3}
>>> d2 = {'x':2, 'z':1.4}
>>> d1.update(d2)
>>> d1
{'z': 1.4, 'x': 2, 'y': 3}
d.values( ) 将字典里所有的值以dict_values 的形式返回(Python 2 中d.itervalues() 返回针对字典d里所有值的迭代器对象,Python 3无此语法)
>>> d1
{'z': 1.4, 'x': 2, 'y': 3}
>>> d1.values()
dict_values([1.4, 2, 3])
>>> list(d1.values())
[1.4, 2, 3]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19