
Python中字典映射类型的学习教程
字典是python语言中唯一的映射类型,用花括号{}表示,一个字典条目就是一个键值对,方法keys()返回字典的键列表,values()返回字典的值列表,items()返回字典的键值对列表。字典中的值没有任何限制,它们可以是任意python对象,但字典中的键是有类型限制的,每个键只能对应一个值,且键必须是可哈系的,所有不可变类型都是可哈希的。不可变集合frozenset的元素可作为字典的键,但可变集合set就不行了。
以下是字典类型的常用方法。
clear():删除字典中所有元素。
copy():返回字典(浅复制)的一个副本。
fromkeys(seq,val=None):创建并返回一个新字典,以seq中的元素做该字典的键,val做该字典中所有键对应的初始值。
get(key,default=None):返回字典中的键key对应的值value,如果字典中不存在此键,则返回default的值。
has_key(key):如果键key在字典中存在,返回True,否则返回False。python2.2后这个方法几乎已废弃不用了,通常用in来替代。
items():返回一个包含字典中键值对元组的列表。
keys():返回一个包含字典中键的列表。
iter():方法iteritems()、iterkeys()、itervalues()与它们对应的非迭代方法一样,不同的是它们返回一个迭代子,而不是一个列表。
pop(key[,default]):和方法get()类似,如果字典中key键存在,删除并返回dict[key],如果key键不存在,且没有给出default的值,引发KeyError异常。
setdefault(key,default=None):和方法get()相似,如果字典中不存在key键,由dict[key]=default为它赋值。
update(dict2):将字典dict2的键值对添加到当前字典中。
values():返回一个包含字典中所有值的列表。
键可以是多种类型,但键是唯一的不重复的,值可以不唯一
>>> d = {'a':1, 'b':2}
>>> d
{'b': 2, 'a': 1}
>>> L = [('Jonh',18), ('Nancy',19)]
>>> d = dict(L) #通过包含键值的列表创建
>>> d
{'Jonh': 18, 'Nancy': 19}
>>> T = tuple(L)
>>> T
(('Jonh', 18), ('Nancy', 19))
>>> d = dict(T) #通过包含键值的元组创建
>>> d
{'Jonh': 18, 'Nancy': 19}
>>> d = dict(x = 1, y = 3) #通过关键字参数创建
>>> d
{'x': 1, 'y': 3}
>>> d[3] = 'z'
>>> d
{3: 'z', 'x': 1, 'y': 3}
还有一个创建字典的方法就是 fromkeys(S [ , v]) python里的解释是 New dict with key from S and value equal to v ,即将S里的元素作为键,v作为所有键的值,v 的默认值为 None。可以通过已存在的字典 d 调用 d.fromkeys(S [, v] ) 也可以通过类型调用 dict.fromkeys( S [, v] )
>>> d
{3: 'z', 'y': 3}
>>> L1 = [1,2,3]
>>> d.fromkeys(L1)
{1: None, 2: None, 3: None}
>>> {}.fromkeys(L1,'nothing')
{1: 'nothing', 2: 'nothing', 3: 'nothing'}
>>> dict.fromkeys(L1,'over')
{1: 'over', 2: 'over', 3: 'over'}
字典是无序的,所以不能通过索引来获取值,要通过键来找到关联值。对于不存在的键,会出现错误KeyError
>>> d
{3: 'z', 'x': 1, 'y': 3}
>>> d[3]
'z'
>>> d['x']
1
>>> d[0]
Traceback (most recent call last):
File "<pyshell#26>", line 1, in <module>
d[0]
KeyError: 0
字典操作和方法:
len( d ) 返回字典d里面的键值对数目
x in d 查询字典d中是否有键 x
>>> d = {'x':1,'y':3}
>>> len(d)
2
>>> 'x' in d
True
>>> 'z' not in d
True
d [ x ] = y 若键 x 存在,则修改 x 对应的值为 y, 若键 x 不存在,则在字典 d 中增加键值对 x : y
>>> d
{'x': 1, 'y': 3}
>>> d['x'] = 1.5
>>> d
{'x': 1.5, 'y': 3}
>>> d['z'] = 5
>>> d
{'z': 5, 'x': 1.5, 'y': 3}
del d[x] 删除字典 d 中键为 x 的键值对,若 x 不存在会出现 KeyError
>>> d = {'z': 5, 'x': 1.5, 'y': 3}
>>> del d['x']
>>> d
{'z': 5, 'y': 3}
>>> del d['x']
Traceback (most recent call last):
File "<pyshell#66>", line 1, in <module>
del d['x']
KeyError: 'x'
d.clear() 清空字典d
d.copy() 对字典 d 进行浅复制,返回一个和d有相同键值对的新字典
>>> d
{'z': 5, 'y': 3}
>>> d.copy()
{'z': 5, 'y': 3}
d.get( x [ , y]) 返回字典 d 中键 x 对应的值,键 x 不存在的时候返回 y, y 的默认值为None
>>> d = {'z': 5, 'x': 1.5, 'y': 3}
>>> d.get('x')
1.5
>>> del d['x']
>>> d.get('x')
>>> d.get('x','nothing')
'nothing'
d.items() 将字典 d 中所有键值对以dict_items的形式返回(Python 2中d.iteritems() 返回一个针对键值对的迭代器对象,Python 3中没有 iteritems 方法了)
>>> d = {'z': 5, 'x': 1.5, 'y': 3}
>>> d.items()
dict_items([('z', 5), ('x', 1.5), ('y', 3)])
>>> list(d.items())
[('z', 5), ('x', 1.5), ('y', 3)]
d.keys() 将字典 d 中所有的键以dict_keys形式返回(Python 2 中d.iterkeys() 返回一个针对键的迭代器对象,Python 3 没有此语法)
>>> d.keys()
dict_keys(['z', 'x', 'y'])
>>> for x in d.keys():
print(x)
z
x
y
d.pop( x ) 返回给定键 x 对应的值,并将该键值对从字典中删除
>>> d = {'z': 5, 'x': 1.5, 'y': 3}
>>> d.pop('x')
1.5
>>> d.pop('x')
Traceback (most recent call last):
File "<pyshell#92>", line 1, in <module>
d.pop('x')
KeyError: 'x'
d.popitem( ) 返回并删除字典 d 中随机的键值对
>>> d = {'z': 5, 'x': 1.5, 'y': 3}
>>> d.popitem()
('z', 5)
>>> d.popitem()
('x', 1.5)
d.setdefault( x, [ , y ] ) 返回字典 d 中键 x 对应的值,若键 x 不存在,则返回 y, 并将 x : y 作为键值对添加到字典中,y 的默认值为 None
>>> d = {'z': 5, 'x': 1.5, 'y': 3}
>>> d.setdefault('x')
1.5
>>> del d['x']
>>> d.setdefault('x','Look!')
'Look!'
>>> d
{'z': 5, 'x': 'Look!', 'y': 3}
d.update( x ) 将字典 x 所有键值对添加到字典 d 中(不重复,重复的键值对用字典 x 中的键值对替代字典 d 中)
>>> d1 = {'x':1, 'y':3}
>>> d2 = {'x':2, 'z':1.4}
>>> d1.update(d2)
>>> d1
{'z': 1.4, 'x': 2, 'y': 3}
d.values( ) 将字典里所有的值以dict_values 的形式返回(Python 2 中d.itervalues() 返回针对字典d里所有值的迭代器对象,Python 3无此语法)
>>> d1
{'z': 1.4, 'x': 2, 'y': 3}
>>> d1.values()
dict_values([1.4, 2, 3])
>>> list(d1.values())
[1.4, 2, 3]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18