
Python实现基本线性数据结构
数组的设计
数组设计之初是在形式上依赖内存分配而成的,所以必须在使用前预先请求空间。这使得数组有以下特性:
1、请求空间以后大小固定,不能再改变(数据溢出问题);
2、在内存中有空间连续性的表现,中间不会存在其他程序需要调用的数据,为此数组的专用内存空间;
3、在旧式编程语言中(如有中阶语言之称的C),程序不会对数组的操作做下界判断,也就有潜在的越界操作的风险(比如会把数据写在运行中程序需要调用的核心部分的内存上)。
因为简单数组强烈倚赖电脑硬件之内存,所以不适用于现代的程序设计。欲使用可变大小、硬件无关性的数据类型,Java等程序设计语言均提供了更高级的数据结构:ArrayList、Vector等动态数组。
Python的数组
从严格意义上来说:Python里没有严格意义上的数组。
List可以说是Python里的数组,下面这段代码是CPython的实现List的结构体:
typedef struct {
PyObject_VAR_HEAD
/* Vector of pointers to list elements. list[0] is ob_item[0], etc. */
PyObject **ob_item;
/* ob_item contains space for 'allocated' elements. The number
* currently in use is ob_size.
* Invariants:
* 0 <= ob_size <= allocated
* len(list) == ob_size
* ob_item == NULL implies ob_size == allocated == 0
* list.sort() temporarily sets allocated to -1 to detect mutations.
*
* Items must normally not be NULL, except during construction when
* the list is not yet visible outside the function that builds it.
*/
Py_ssize_t allocated;
} PyListObject;
当然,在Python里它就是数组。
后面的一些结构也将用List来实现。
堆栈
什么是堆栈
堆栈(英语:stack),也可直接称栈,在计算机科学中,是一种特殊的串列形式的数据结构,它的特殊之处在于只能允许在链接串列或阵列的一端(称为堆叠顶端指标,英语:top)进行加入资料(英语:push)和输出资料(英语:pop)的运算。另外堆叠也可以用一维阵列或连结串列的形式来完成。堆叠的另外一个相对的操作方式称为伫列。
由于堆叠数据结构只允许在一端进行操作,因而按照后进先出(LIFO, Last In First Out)的原理运作。
特点
1、先入后出,后入先出。
2、除头尾节点之外,每个元素有一个前驱,一个后继。
操作
从原理可知,对堆栈(栈)可以进行的操作有:
1、top() :获取堆栈顶端对象
2、push() :向栈里添加一个对象
3、pop() :从栈里推出一个对象
实现
class my_stack(object):
def __init__(self, value):
self.value = value
# 前驱
self.before = None
# 后继
self.behind = None
def __str__(self):
return str(self.value)
def top(stack):
if isinstance(stack, my_stack):
if stack.behind is not None:
return top(stack.behind)
else:
return stack
def push(stack, ele):
push_ele = my_stack(ele)
if isinstance(stack, my_stack):
stack_top = top(stack)
push_ele.before = stack_top
push_ele.before.behind = push_ele
else:
raise Exception('不要乱扔东西进来好么')
def pop(stack):
if isinstance(stack, my_stack):
stack_top = top(stack)
if stack_top.before is not None:
stack_top.before.behind = None
stack_top.behind = None
return stack_top
else:
print('已经是栈顶了')
队列
什么是队列
和堆栈类似,唯一的区别是队列只能在队头进行出队操作,所以队列是是先进先出(FIFO, First-In-First-Out)的线性表
特点
1、先入先出,后入后出
2、除尾节点外,每个节点有一个后继
3、(可选)除头节点外,每个节点有一个前驱
操作
1、push() :入队
2、pop() :出队
实现
普通队列
class MyQueue():
def __init__(self, value=None):
self.value = value
# 前驱
# self.before = None
# 后继
self.behind = None
def __str__(self):
if self.value is not None:
return str(self.value)
else:
return 'None'
def create_queue():
"""仅有队头"""
return MyQueue()
def last(queue):
if isinstance(queue, MyQueue):
if queue.behind is not None:
return last(queue.behind)
else:
return queue
def push(queue, ele):
if isinstance(queue, MyQueue):
last_queue = last(queue)
new_queue = MyQueue(ele)
last_queue.behind = new_queue
def pop(queue):
if queue.behind is not None:
get_queue = queue.behind
queue.behind = queue.behind.behind
return get_queue
else:
print('队列里已经没有元素了')
def print_queue(queue):
print(queue)
if queue.behind is not None:
print_queue(queue.behind)
链表
什么是链表
链表(Linked list)是一种常见的基础数据结构,是一种线性表,但是并不会按线性的顺序存储数据,而是在每一个节点里存到下一个节点的指针(Pointer)。由于不必须按顺序存储,链表在插入的时候可以达到O(1)的复杂度,比另一种线性表顺序表快得多,但是查找一个节点或者访问特定编号的节点则需要O(n)的时间,而顺序表相应的时间复杂度分别是O(logn)和O(1)。
特点
使用链表结构可以克服数组链表需要预先知道数据大小的缺点,链表结构可以充分利用计算机内存空间,实现灵活的内存动态管理。但是链表失去了数组随机读取的优点,同时链表由于增加了结点的指针域,空间开销比较大。
操作
1、init() :初始化
2、insert() : 插入
3、trave() : 遍历
4、delete() : 删除
5、find() : 查找
实现
此处仅实现双向列表
class LinkedList():
def __init__(self, value=None):
self.value = value
# 前驱
self.before = None
# 后继
self.behind = None
def __str__(self):
if self.value is not None:
return str(self.value)
else:
return 'None'
def init():
return LinkedList('HEAD')
def delete(linked_list):
if isinstance(linked_list, LinkedList):
if linked_list.behind is not None:
delete(linked_list.behind)
linked_list.behind = None
linked_list.before = None
linked_list.value = None
总结
以上就是利用Python实现基本线性数据结构的全部内容
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15