
大数据应用正在颠覆传统保险精算模型
“互联网时代是一个革命和被革命的时代,互联网在为保险业带来新机遇的同时,也将影响保险业。”泰康人寿副总裁王道南近日称,大数据与保险碰撞出美妙火花的同时,也让传统精算模型面临挑战。这种观点为更多人认同。比如平安直通产险副总经理孙炜认为,大数据可能从根本上改变精算。
一个原本不存在的市场
“大数据已全面渗透保险,从平台化的数据采集,到场景化的数据挖掘,到服务化的数据更新,再到个性化的数据应用。”在9月28日至29日举行,由中国精算师协会主办、泰康人寿协办的第15届中国精算年会上,泰康人寿副总裁王道南称,大数据与保险碰撞出美妙的火花。
他认为,互联网为保险业带来新的机遇,创造出一个原来不存在的市场,颠覆了保险客户数的数量级。这一机遇的最好例子要算运费险,这一保险产品每单0.5元到1元,每日约200万单,成交量创造过单日超1.5亿笔的纪录。
华泰财险电子商务部总经理施辉认为,互联网为保险业提供了细分和专业化最好的时机。以互联网环境为背景,形成互联网生态,在新生态环境下滋生新的风险,并对各种未知的风险定量化,产生新的保险产品,为保险行业发展提供创新土壤。
“大数据是互联网产品定价的终极武器,免费将颠覆高度标准化、低价值的市场。”王道南称,互联网将颠覆传统保险的定价方式。同时,件均将大幅下降,客户量将急剧上升;而通过大数据、自动化,保险公司的经营风险和提供服务的成本将大幅降低。公司和客户之间的交互方式将发生革命:保险公司与客户之间发生更为频繁的交互。
“过去保险公司跟客户的交互就一年一次,但是现在跟客户的交互更多。通过跟第三方合作,保险公司可以通过分析运动、社交甚至交易等在内的大数据,对客户更加了解,所以亲民、普惠、高效在回归到保险服务上,这是大数据对行业的一个影响。”王道南称。
而在充分了解客户风险状况后,保险公司可以更有能力做产品形态(比如免赔额、最高保额、等待期)、产品价格(差别定价、无理赔优待)、两核条件(免核保、免核赔)的差别制定。
x变量更丰富
而正在全面渗透保险的大数据,让传统精算模型面临挑战。
小微金融服务集团(筹)首席战略官兼副总裁舒明预测了大数据下的运费险定价演进过程:从一口价时代(保费按5%费率统一收取)到精算定价时代(以历史出现率为唯一定价因子),到数据定价时代(以30+因子统计建模,预测退货率),再到大数据定价时代(百万ID特征,实时特征)。
“过去保险业所依赖的疾病发生率、生命表、住院发生率等历史数据,甚至包括性别、年龄、职业等在内的信息,应该讲,维度还是相对单一的。”王道南称,未来的大数据,将包括地区、信用、收入、浏览记录、生活作息、运动频率、兴趣爱好、上网时长、风险偏好等更多维、更全面的信息,所以,如何满足客户差异化、个性化的需求,传统的机遇经验数据的核保定价模型如何与时俱进,都值得探讨。
这一观点为更多人认同。比如平安直通产险副总经理孙炜就认为,大数据可能从根本上改变精算。他给出了三个理由。
“以前的精算解决的是找到y=f(x)里的f的问题,去拟合、解决预测未来的问题,而未来的大数据,要去解决x,随机变量更丰富,类型各不相同,也是行业目前有所缺失的。”
另外,孙炜认为,大数据下的精算方法和工具会有变化。从此前的概率事件、因果解决预测,到未来可能变成从相关性找到预测的情况;第二是从间接变量到直接变量,现在是从过往的历史赔付次数和金额等,未来要找到直接的风险变量,去对这些变量进行精算评估;再有就是从损失分布的理论与实证检验,大数据本身的处理方法等。
同时,未来,数据应该视为保险公司的核心资产。“未来可能出现,数据的应用情况和质量也应该成为公司的核心资产,看一个公司价值的时候,金融分析师也可能成为一个衡量维度。”
舒明则预测,保险流程的创新会基于大数据的精算模型,实现精准化、个性化定价,并实现快速理赔。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16