京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据正在影响保险精算领域_数据分析师
伴随着中国保险市场的壮大,精算师的行业地位也不断上升。2014年秋季中国精算师资格考试将于10月18日至24日举行,今年报名人数依旧火爆。
除了中国精算师资格,近年来,北美精算师也成为备受国内保险公司精算部门推崇的一项资格认证。北美精算师协会会员中,已有约12%来自中国。
北美精算师协会(SOA)前任会长、美国财政部的精算师汤娅·曼宁日前在接受证券时报记者专访时对中国保险市场予以积极展望。她认为,北美精算师协会将国外的精算思维和行业经验带到中国,并积极本土化,对中国精算行业有着积极意义。
风险模型决定盈利
证券时报记者:作为资深精算界人士,在您看来,精算对保险业的重要性体现在哪里?精算在保险产品定价中起到什么样的作用?它又是如何影响保险公司盈利的?
汤娅·曼宁:精算学在保险中的作用至关重要,尤其在风险控制、风险定价以及配合不断扩展的监管需求方面起到了不可替代的作用。精算师们都接受过很好的培训,非常适合参与产品定价,他们专精于风险管控以及财务预测,而这也同样是中国保险市场发展过程中非常重要的因素之一。
一个保险公司的盈利水平取决于这家公司对预期的管理水平,例如对保费收益、定价的预期,这其中就涉及风险模型的建立。如果一个公司在风险模型方面做得不够到位,就可能导致定价过低,保费收缴不足,进而影响到公司的整体业务水平。精算师善于应对极为复杂的精算模型,通过分析进而拟定储备金和保费的合理水平。
证券时报记者:在海外目前有哪些精算模型受到欢迎?
汤娅·曼宁:举例来说,大数据、预测模型等数据分析方式目前在精算领域越来越受重视。将大量的数据输入模型中,从而得出定价模型,通过这样的方式,精算能够协助保险业推出更合理定价的产品,并且也能合理规划储备水平。
大数据应用加速
证券时报记者:目前很多险企都在探讨如何利用大数据,也在不断寻找最合适的实践方式,大数据如何更广泛为保险行业所用?
汤娅·曼宁:在9月28日的中国精算年会上,有演讲者讲到了保险产品定价的发展历程。最初,定价可能仅仅是基于保险责任范围,用简单的百分比如5%来计算,但这种方式过于简单。随着可使用的方式方法逐渐成熟,精算师开始参与其中,通过处理历史理赔数据进而设定产品价格以及储备金水平。现在,定价过程演变得更为精进,精算师们开始使用统计分析方法,除历史数据资料外,还有其他类型的数据被加入统计模型中。
过去,只需要历史索赔资料及一些数据元素即可完成,而现在需要分析的数据越来越多。
可能存在成百上千种的数据可供电脑分析处理,帮我们分析、定价、并且预期关于索赔的情况。就财险来说,各种各样的因素或数据都可以影响理赔的概率。
证券时报记者:能否与我们分享一些国外精算业运用大数据的较为成功案例?
汤娅·曼宁:这种情况在美国保险市场,尤其是健康保险领域应用得比较普遍。在美国,个人的信贷历史都有可能成为保险公司的参照,成为影响消费者购买保险产品价格的因素。
车险的例子可能更具代表性。过去,保险公司利用驾驶者年龄、过往驾驶历史、意外事故、罚单情况或交通违规等数据资料分析客户,决定车险产品的定价。现在,如果驾驶者允许的话,还可以在车上安装仪器来监测驾驶情况,这样保险公司就能通过观察司机在驾驶过程中与前车保持的距离如何,是否有超速的情况或其他违章情况,搜集更多数据。只要得到允许,保险公司就能采集到更多的数据资料用于车险定价。
证券时报记者:基于大数据,一些车商提出了车联网计划,比如奔驰。在未来的全新市场环境中,车险也将完全改变,您如何看待这样的趋势对精算业可能造成的影响?
汤娅·曼宁:伴随技术的不断发展,相应而言,保险的标的和方式都在不断发生变化。对精算师来说,这一演变是不断持续的,他们需具备相应的能力对新产生的风险进行分析。面向未来,SOA一直不断为精算师们提供支持,让他们在新的技术与风险出现时,能够具备专业的技能来应对这些变化。
寻求与中国精算界合作
证券时报记者:SOA去年推出了财产保险精算师专业发展途径,为什么如此重视财险领域?
汤娅·曼宁:中国的保险市场发展得非常快,而在这些发展领域之中,财险又是发展最快的一个领域,预计到2020年会增长50%。需要更多的精算师投身其中支持这个行业的发展。
证券时报记者:目前SOA的中国会员人数是多少?北美精算师协会与国内保险业界会有哪些合作?
汤娅·曼宁:目前中国的会员人数不断增加,已将近700人,并且有2000多候选人,这是我们在北美外,考生人数第二大地区。在所有会员中,12%~14%来自中国,而参加考试的考生中,30%来自中国,这一数字还在不断上升。北美精算师考试极为严苛,但来自中国的考生表现优异。一般来说,考试的整体通过率在50%左右,但中国考生比来自其他地区的考生普遍高出25%。
另外,我们也正在寻求途径与中国精算师协会开展合作,为精算行业的发展提供支持。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19