从"深蓝"到 AlphaGo丨AI 在游戏领域的升级打怪之路
可以说,AI的发展进化史就是AI在游戏领域的升级史。
SciShow是Youtube上热门的科普向脱口秀节目。它的内容包罗万象,无论什么问题在这里都会得到风趣又详尽的解答。在本次节目中,介绍了AI 是如何在游戏领域通过不断的升级发展,一步步碾压人类的。
CDA字幕组对该视频进行了汉化,附有中文字幕的视频如下:
AI 在游戏领域的发展进化史
针对不方便打开视频的小伙伴,CDA字幕组也贴心的整理了文字版本,如下:
机器赢了。机器如今几乎能够打败人类发明的所有游戏。这都归功于一些我们通过AI实现的技术。
人工智能丨AI
AI最简单定义是: 为解决问题而设计的计算机程序。
大多数程序,包括你此刻看视频用到的,都是不能解决问题的。相反,这些程序执行程序员编写的指令。它们不会自己得出完成任务的方案。而AI会尝试自己得出解决方案。AI越聪明,越能解决更复杂的问题。
自从计算机编程出现以来,我们就开始教AI玩游戏。比如跳棋和国际象棋,还有中国的棋盘游戏——围棋。原因是游戏能很好地衡量AI到底有多聪明。玩游戏并取胜,需要解决问题的能力。解决问题的能力正是衡量智能的标准。因为无论对观众还是计算机程序而言,当中对问题的定义都很明确,没有模棱两可的结果。AI要么能够玩跳棋,要么不能。
游戏是开发新型AI的绝佳实验室环境,这就是为什么AI的发展历史也是AI玩游戏的历史。
跳棋丨Checkers
AI在游戏第一次打败人类对手是一个跳棋程序。
于1950年代,由美国计算机科学家Arthur Samuel开发,在IBM 704计算机上运行。
这台机器通过录入磁盘进行编程。跳棋游戏很简单,但IBM 704是个很简单的机器。它不能通过试错法得出所有可能的棋步,从而得出最佳的移动方式,至少无法在合理的时间内完成。除非采用暴力算法,当中需要大量的数字计算。
计算机算出一个棋步后可能出现的各种棋局,然后选择取胜概率最好的棋步。这个方法尽管不够创新,但切实可行。之后我们再回到这个话题。
问题是,暴力算法需要大量的计算资源,从而对数字进行计算,然而在1950年代没有那些资源。因此,最初AI玩游戏主要靠的是启发法(heuristics)。从此之后所有的AI用到了启发法。
启发法是经验法则(rule of thumb),尽管不是一直都正确,但是大多时候是正确的。在计算机科学中,启发法是一种算法。通过选择并不是最好,但足够解决问题的方案,以此来限制蛮力搜索。
一旦跳棋算法发现能够吃掉对手棋子的棋步,然后就停止了,就按这个棋步走。这种简单的启发法足以攻克跳棋。
扑克牌丨Poker
接下来,AI面对的是扑克牌游戏。
1970年代,计算机科学家Donald Waterman编写能够玩抽牌扑克游戏的程序。该游戏给玩家5张牌,可以最多换3张牌。
当中他开发了所谓的"生产系统"(production system)。如今AI当中都包含这一技术。
生产系统使用预先编好的规则来对符号进行分类,比如扑克牌的符号。Watermen开发的系统根据手上已有的牌,对牌的价值大小进行分类。比如一张梅花4,就其本身而言无足挂齿,但如果你手上还有一张方片4和一张黑桃4,那么这张梅花4的价值就会大幅提升。系统将评估这手牌的好坏,以及选择出手还是弃牌。通过把这手牌的价值,与预先编程的所谓好牌和坏牌进行比较。
启发法与生产系统。
前者要依靠经验法则;后者则根据复杂的规则比较系统。这两者的结合,让AI玩简单的棋类游戏变得轻而易举。
但是国际象棋不是简单的棋类游戏,而是更复杂的棋类游戏,要想取胜则需要运用一些成熟技术。
沉思 丨Deep Thought
1980年代,第一批国际象棋机在卡内基梅隆大学诞生。
这些早期的机器中,最成功的是"沉思"(Deep Thought)。每秒能计算70万个棋步。
1988年,Deep Thought试图击败一名国际象棋高手。但那并不是一般的象棋高手,这位棋圣在八 九十年代甚至如今,一直是世界上最顶尖的国际象棋高手。他就是加里·卡斯帕罗夫。
开始Deep Thought根本不是卡斯帕罗夫的对手,打败卡斯帕罗夫需要更快更强大的机器。对Deep Thought进行升级,包括以下改进:
第一、需要更多的内存和多处理器,即计算能力。Deep Thought的后代产品"深蓝"(Deep Blue)应运而生,它是更强大的机器。
第二、更好的软件。当处理数以百万计互相对比的搜索结果时,速度慢是个大问题。为此,深蓝被设计为适合并行处理。另外,系统还要考虑衡量一些更微妙的棋位。换句话说,采用了更优的启发法。
深蓝丨 Deep Blue
第一代深蓝的搜索速度约为每秒5千万到1亿个棋位。与Garry 卡斯帕罗夫对战时,它以2:4惨败给对手。每秒计算1亿个棋位,仍不足以击败人类的国际围棋冠军。
为此,深蓝团队在系统中增加了一倍的芯片,同时改进了软件,使每个芯片效率提升了25%。1997年与卡斯帕罗夫再次对战时,其运算速度达到了每秒3亿棋位,从而大获全胜。
深蓝的胜利是计算机程序中的伟大壮举。当深蓝击败卡斯帕罗夫时,它是当时世界上最复杂的AI。但总体还是靠暴力算法来实现的。对己方或对方的每个可能的棋步进行暴力搜索,然后选出获胜概率最大的棋步。如果无法战胜对方,程序员升级程序从而计算更多的数字,但这种方法对围棋就不适用了。
围棋丨Go
我们之前的节目说过,谷歌的AlphaGo在2016年3月,击败了世界围棋冠军李世石。但是让我们探究一下,为什么AI攻克围棋是艰巨的任务。
如果你生活在西方国家,你可能对围棋不熟悉。围棋是一个中国的棋类游戏,数千年来其规则从未改变。有时被描述为"东方版国际象棋”,但是围棋要比国际象棋复杂得多,尤其对计算机而言。
首先,围棋棋盘比国际象棋要大。
围棋棋盘为19×19的网格,国际象棋棋盘为8×8。但这实际低估了围棋的复杂性,因为围棋的棋子不是放在网格中,而是放在四个角上。也就是说每个网格代表四种可能的位置,即与周围网格的交叉点。总而言之,围棋中的棋步组合比宇宙中原子数量还多。
其次,围棋中每个棋子都同等重要。
这与国际象棋不同,比如国际象棋中,后就比兵要重要。这种关系是可以通过编程让AI理解的,比如输入生产系统。但是围棋棋子的价值取决于,各个棋子在棋盘位置的相互关系。
围棋的目标是用在对弈过程中,以双方棋子所围"地"的大小决定胜负,所以每次棋步都是很主观的。甚至高水平的棋手有时也很难解释,他们是如何判断每个棋步和好坏。
计算机不擅长的领域就是主观性,以及计算万亿次的位置。因此深蓝的暴力算法对于围棋是完全不可取的。
阿尔法狗丨AlphaGo
AlphaGo并不是采用暴力算法的系统,而是使用深度神经网络。面部识别也是利用的该技术。并不是对一个个棋子的位置进行计算,而是通过寻找棋盘中的模式。
如同面部识别系统会搜寻眼睛、鼻子、嘴等图像。AlphaGo寻找提供强大或薄弱战术的棋子模式。但它要如何明确什么会带来有力或不利的局面呢? 我们提过每个特定位置的价值是主观的,不是么?
那么你需要了解深度神经网络的运行原理。
深度神经网络由不同机器系统的层构成,这称为神经元。这些神经元全都堆叠在一起、并行运行。从而神经网络能够对同一个问题,从多个不同角度、同时进行分析。
每个层根据不同标准评判同一图像,其中一层将看到围棋棋盘的图像,选出当中所有合理的棋步;下一层将找到棋盘中还未被控制的区域;再下面一层会追踪,自从一位棋手在任何区域落子,已经过了多久时间。从而告诉系统,哪片区域目前处于争夺状态,哪片区域暂时安全、可以先忽视。接下来的一层,会把白字黑字的模式与内部数据库进行比较,看目前棋局是否类似之前看到过的。诸如此类。
AlphaGo的神经元共用48层,每一层都用不同的方式分析棋局,并且这些层相互传递信息。因此如果某层发现很有利的棋步,那么其他层就会关注棋局的这个部分。一旦所有层都认同,某个棋步符合它们判断好棋的标准,AlphaGo就会落子。通过这种方式使用深度神经网络,系统就能模仿人类的直觉和创造力。
最终,AlphaGo以4:1击败李世石,李世石相当于围棋领域的卡斯帕罗夫。但AlphaGo只会变得越来越聪明。
AI的下一个挑战丨 What’s next
在游戏领域 AI几乎没有尚未攻克的挑战了,围棋是人类设计的最复杂的棋类游戏。但我还想看AI挑战魔镇惊魂(Arkham Horror:一款难度颇高的桌游)。
总之,我们设计了AlphaGo和深蓝。这些程序都是人类智力和好奇心的表现。
如果我们开发的AI能够在最复杂的游戏中击败该领域的人类顶尖高手,那么谁知道我们还能做出什么呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08