
虽然尚处在开发和使用的早期阶段,AI、机器学习和深度学习已经影响了我们的生活,工作和娱乐。你是否已经准备好接受和利用这些颠覆性创新了呢?
美国的 Hanson Robotics 公司研发的机器人Sophia在上个月正式被沙特阿拉伯授予了公民身份,而沙特阿拉伯也成了世界上第一个赋予机器人公民权的国家。Sophia 以奥黛丽·赫本为原型设计,这位沙特公民如今已经成为了家喻户晓的网红,出现在各个电视节目和全球性会议上。
其实 Sophia 并不孤单。事实上,数十年以来人们在日常生活的方方面面都会使用到 AI。从智能手机上的语音识别,房间清扫机器人,再到提醒你会议召开的虚拟助手,AI 已经证明自己是信息、学习、推理、计划和交流的重要提供者。
AI 被定义为通过计算机有效地模拟人类智能的过程,AI 还包含机器学习和深度学习的概念。通过机器学习,AI 能够让无生命系统进行自动学习并改进经验(非常“人性化”的特性);而深度学习则使计算机能够在没有被明确地编程时进行学习。
机器学习能够帮助 Uber 等公司确定乘车时间,估计 UberEATS(Uber的送餐应用)的送餐时间,并计算出最佳上车位置。谷歌把深度学习用于语音和图像识别算法,亚马逊使用它来确定客户接下来想看什么或者买什么。
AI 影我们的三种方式
AI、机器学习和深度学习可以组合在一起运用,从而帮助企业发展得更智能,更好,更快。虽然这三者仍处于技术发展的初期,但已经在不知不觉中影响我们的生活。主要体现在以下三点:
1. 简化我们的日常生活
根据《福布斯》杂志的一篇文章,糟糕的客户服务已经造成了620亿美元的损失,而且这一赤字将持续增加。AI 能够做到人类无法完成的事情,从而改善这一情况。数字助理已经成为日常生活中被大众普遍认可的得力助手。我们可以期待 AI 将在未来的生活中发挥更大的作用,但这还只是一个开始。普华永道(PwC)最近的调查显示,大部分消费者认为,不久的将来 AI 将大大简化人们的日常生活。
2. 让公共部门更有效率
AI 和机器学习能够显著减少和控制公共部门机构的运营成本。
比如下面的例子:
美国陆军医疗部正在开发可穿戴式监视器,这种监视器使用机器学习算法来衡量伤口的潜在严重性,帮助医疗人员优先处理。
白宫、美国海关和移民局使用聊天机器人(chatbot)来回答基本问题,把复杂的问题留给人工客服来回答。
美国邮政服务采用手写识别的方式按邮政编码分类邮件; 有些机器每小时可以处理一万八千封邮件。
根据德勤最近的一项研究显示,使用 AI 来自动处理联邦政府的工作任务,每年至少可节省9670万工时,节省成本33亿美元。
3. 解决企业面临的巨大挑战
以制造业为例。工业革命使我们从大规模生产转向自动化。从第一批机器人在生产线上工作以来,已经有半个多世纪了。如今,被称为工业 4.0的制造通过运用 AI、机器学习和物联网将变得更加智能。来自客户、合作伙伴、市场、工厂车间和仓库的数据都可以进行收集、整合、分析和预测,从而使公司更有效、准确地改变制造和运输产品货物的方式。
制造业不是使用 AI 的唯一例子; AI 影响着市场的各个领域,用来解决复杂的业务问题。
例如,许多大型金融机构已经通过投资 AI 系统来协助其投资实践。《美国银行家日报》的一篇报告指出,财富管理公司BlackRock的 AI 引擎 Aladdin 如何帮助制定投资决策; 同时该公司还将该系统提供给客户,已有近3万人使用该系统。Aladdin 具有很多功能,包括使用自然语言处理来阅读新闻,券商报告和社交媒体信息等文本。该系统还能帮助用户做出投资决策。
你应该怎么做?
使用 AI 需要高度专业化的技能。因此人们必须把 AI 与如何有效地运用于私人或公共部门联系起来。
随着 AI、机器学习和深度学习的不断发展和成熟,每个企业都应该开始尝试这些技术,从而让公司发展得更智能、更好、更快速。那么你该怎么做?
首先应该从业务策略开始。你的公司可能没有一个正式的、系统化的方法方法来预测未来,但肯定有商业策略。这些策略来自于关于将来发生变化的假设。
这一过程需要自我反省。包括以下这些步骤:
1.仔细审视目前的策略。你的团队在执行目前计划时表现如何?需要做些什么改变?从当前情况考虑,利用 AI 技术能够使公司运作更高效。
2.分析你目前的工作对于团队,合作伙伴和客户的影响。在哪些方面,你的工作可以被显著提高?
3.评估你现在的能力,并做出改进。在开始尝试 AI 时,你有什么资产和资源?
你对未来的假设会直接影响到现在正在做的事情。请仔细地重新审视目前的策略和流程。
任何未来转型的必要组成部分都需要左脑(分析)与右脑(创造)相结合的人才和文化。AI 的价值创造过程也不例外。它始于产生正确的想法,并以执行有效的方案结束。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15