
虽然尚处在开发和使用的早期阶段,AI、机器学习和深度学习已经影响了我们的生活,工作和娱乐。你是否已经准备好接受和利用这些颠覆性创新了呢?
美国的 Hanson Robotics 公司研发的机器人Sophia在上个月正式被沙特阿拉伯授予了公民身份,而沙特阿拉伯也成了世界上第一个赋予机器人公民权的国家。Sophia 以奥黛丽·赫本为原型设计,这位沙特公民如今已经成为了家喻户晓的网红,出现在各个电视节目和全球性会议上。
其实 Sophia 并不孤单。事实上,数十年以来人们在日常生活的方方面面都会使用到 AI。从智能手机上的语音识别,房间清扫机器人,再到提醒你会议召开的虚拟助手,AI 已经证明自己是信息、学习、推理、计划和交流的重要提供者。
AI 被定义为通过计算机有效地模拟人类智能的过程,AI 还包含机器学习和深度学习的概念。通过机器学习,AI 能够让无生命系统进行自动学习并改进经验(非常“人性化”的特性);而深度学习则使计算机能够在没有被明确地编程时进行学习。
机器学习能够帮助 Uber 等公司确定乘车时间,估计 UberEATS(Uber的送餐应用)的送餐时间,并计算出最佳上车位置。谷歌把深度学习用于语音和图像识别算法,亚马逊使用它来确定客户接下来想看什么或者买什么。
AI 影我们的三种方式
AI、机器学习和深度学习可以组合在一起运用,从而帮助企业发展得更智能,更好,更快。虽然这三者仍处于技术发展的初期,但已经在不知不觉中影响我们的生活。主要体现在以下三点:
1. 简化我们的日常生活
根据《福布斯》杂志的一篇文章,糟糕的客户服务已经造成了620亿美元的损失,而且这一赤字将持续增加。AI 能够做到人类无法完成的事情,从而改善这一情况。数字助理已经成为日常生活中被大众普遍认可的得力助手。我们可以期待 AI 将在未来的生活中发挥更大的作用,但这还只是一个开始。普华永道(PwC)最近的调查显示,大部分消费者认为,不久的将来 AI 将大大简化人们的日常生活。
2. 让公共部门更有效率
AI 和机器学习能够显著减少和控制公共部门机构的运营成本。
比如下面的例子:
美国陆军医疗部正在开发可穿戴式监视器,这种监视器使用机器学习算法来衡量伤口的潜在严重性,帮助医疗人员优先处理。
白宫、美国海关和移民局使用聊天机器人(chatbot)来回答基本问题,把复杂的问题留给人工客服来回答。
美国邮政服务采用手写识别的方式按邮政编码分类邮件; 有些机器每小时可以处理一万八千封邮件。
根据德勤最近的一项研究显示,使用 AI 来自动处理联邦政府的工作任务,每年至少可节省9670万工时,节省成本33亿美元。
3. 解决企业面临的巨大挑战
以制造业为例。工业革命使我们从大规模生产转向自动化。从第一批机器人在生产线上工作以来,已经有半个多世纪了。如今,被称为工业 4.0的制造通过运用 AI、机器学习和物联网将变得更加智能。来自客户、合作伙伴、市场、工厂车间和仓库的数据都可以进行收集、整合、分析和预测,从而使公司更有效、准确地改变制造和运输产品货物的方式。
制造业不是使用 AI 的唯一例子; AI 影响着市场的各个领域,用来解决复杂的业务问题。
例如,许多大型金融机构已经通过投资 AI 系统来协助其投资实践。《美国银行家日报》的一篇报告指出,财富管理公司BlackRock的 AI 引擎 Aladdin 如何帮助制定投资决策; 同时该公司还将该系统提供给客户,已有近3万人使用该系统。Aladdin 具有很多功能,包括使用自然语言处理来阅读新闻,券商报告和社交媒体信息等文本。该系统还能帮助用户做出投资决策。
你应该怎么做?
使用 AI 需要高度专业化的技能。因此人们必须把 AI 与如何有效地运用于私人或公共部门联系起来。
随着 AI、机器学习和深度学习的不断发展和成熟,每个企业都应该开始尝试这些技术,从而让公司发展得更智能、更好、更快速。那么你该怎么做?
首先应该从业务策略开始。你的公司可能没有一个正式的、系统化的方法方法来预测未来,但肯定有商业策略。这些策略来自于关于将来发生变化的假设。
这一过程需要自我反省。包括以下这些步骤:
1.仔细审视目前的策略。你的团队在执行目前计划时表现如何?需要做些什么改变?从当前情况考虑,利用 AI 技术能够使公司运作更高效。
2.分析你目前的工作对于团队,合作伙伴和客户的影响。在哪些方面,你的工作可以被显著提高?
3.评估你现在的能力,并做出改进。在开始尝试 AI 时,你有什么资产和资源?
你对未来的假设会直接影响到现在正在做的事情。请仔细地重新审视目前的策略和流程。
任何未来转型的必要组成部分都需要左脑(分析)与右脑(创造)相结合的人才和文化。AI 的价值创造过程也不例外。它始于产生正确的想法,并以执行有效的方案结束。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28