
虽然尚处在开发和使用的早期阶段,AI、机器学习和深度学习已经影响了我们的生活,工作和娱乐。你是否已经准备好接受和利用这些颠覆性创新了呢?
美国的 Hanson Robotics 公司研发的机器人Sophia在上个月正式被沙特阿拉伯授予了公民身份,而沙特阿拉伯也成了世界上第一个赋予机器人公民权的国家。Sophia 以奥黛丽·赫本为原型设计,这位沙特公民如今已经成为了家喻户晓的网红,出现在各个电视节目和全球性会议上。
其实 Sophia 并不孤单。事实上,数十年以来人们在日常生活的方方面面都会使用到 AI。从智能手机上的语音识别,房间清扫机器人,再到提醒你会议召开的虚拟助手,AI 已经证明自己是信息、学习、推理、计划和交流的重要提供者。
AI 被定义为通过计算机有效地模拟人类智能的过程,AI 还包含机器学习和深度学习的概念。通过机器学习,AI 能够让无生命系统进行自动学习并改进经验(非常“人性化”的特性);而深度学习则使计算机能够在没有被明确地编程时进行学习。
机器学习能够帮助 Uber 等公司确定乘车时间,估计 UberEATS(Uber的送餐应用)的送餐时间,并计算出最佳上车位置。谷歌把深度学习用于语音和图像识别算法,亚马逊使用它来确定客户接下来想看什么或者买什么。
AI 影我们的三种方式
AI、机器学习和深度学习可以组合在一起运用,从而帮助企业发展得更智能,更好,更快。虽然这三者仍处于技术发展的初期,但已经在不知不觉中影响我们的生活。主要体现在以下三点:
1. 简化我们的日常生活
根据《福布斯》杂志的一篇文章,糟糕的客户服务已经造成了620亿美元的损失,而且这一赤字将持续增加。AI 能够做到人类无法完成的事情,从而改善这一情况。数字助理已经成为日常生活中被大众普遍认可的得力助手。我们可以期待 AI 将在未来的生活中发挥更大的作用,但这还只是一个开始。普华永道(PwC)最近的调查显示,大部分消费者认为,不久的将来 AI 将大大简化人们的日常生活。
2. 让公共部门更有效率
AI 和机器学习能够显著减少和控制公共部门机构的运营成本。
比如下面的例子:
美国陆军医疗部正在开发可穿戴式监视器,这种监视器使用机器学习算法来衡量伤口的潜在严重性,帮助医疗人员优先处理。
白宫、美国海关和移民局使用聊天机器人(chatbot)来回答基本问题,把复杂的问题留给人工客服来回答。
美国邮政服务采用手写识别的方式按邮政编码分类邮件; 有些机器每小时可以处理一万八千封邮件。
根据德勤最近的一项研究显示,使用 AI 来自动处理联邦政府的工作任务,每年至少可节省9670万工时,节省成本33亿美元。
3. 解决企业面临的巨大挑战
以制造业为例。工业革命使我们从大规模生产转向自动化。从第一批机器人在生产线上工作以来,已经有半个多世纪了。如今,被称为工业 4.0的制造通过运用 AI、机器学习和物联网将变得更加智能。来自客户、合作伙伴、市场、工厂车间和仓库的数据都可以进行收集、整合、分析和预测,从而使公司更有效、准确地改变制造和运输产品货物的方式。
制造业不是使用 AI 的唯一例子; AI 影响着市场的各个领域,用来解决复杂的业务问题。
例如,许多大型金融机构已经通过投资 AI 系统来协助其投资实践。《美国银行家日报》的一篇报告指出,财富管理公司BlackRock的 AI 引擎 Aladdin 如何帮助制定投资决策; 同时该公司还将该系统提供给客户,已有近3万人使用该系统。Aladdin 具有很多功能,包括使用自然语言处理来阅读新闻,券商报告和社交媒体信息等文本。该系统还能帮助用户做出投资决策。
你应该怎么做?
使用 AI 需要高度专业化的技能。因此人们必须把 AI 与如何有效地运用于私人或公共部门联系起来。
随着 AI、机器学习和深度学习的不断发展和成熟,每个企业都应该开始尝试这些技术,从而让公司发展得更智能、更好、更快速。那么你该怎么做?
首先应该从业务策略开始。你的公司可能没有一个正式的、系统化的方法方法来预测未来,但肯定有商业策略。这些策略来自于关于将来发生变化的假设。
这一过程需要自我反省。包括以下这些步骤:
1.仔细审视目前的策略。你的团队在执行目前计划时表现如何?需要做些什么改变?从当前情况考虑,利用 AI 技术能够使公司运作更高效。
2.分析你目前的工作对于团队,合作伙伴和客户的影响。在哪些方面,你的工作可以被显著提高?
3.评估你现在的能力,并做出改进。在开始尝试 AI 时,你有什么资产和资源?
你对未来的假设会直接影响到现在正在做的事情。请仔细地重新审视目前的策略和流程。
任何未来转型的必要组成部分都需要左脑(分析)与右脑(创造)相结合的人才和文化。AI 的价值创造过程也不例外。它始于产生正确的想法,并以执行有效的方案结束。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18