二叉树的性质以及二叉查找树的基本操作
1、基本概念
树(Tree)是n(n≥0)个结点的有限集。在任意一棵非空树中:(1)有且仅有一个特定的被称为根(Root)的结点;(2)当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1,T2,…,Tm,其中每一个集合本身又是一棵树,并且称为根的子树(SubTree)。
度:结点拥有的子树数称为结点的度(Degree)。度为0的结点称为叶子(Leaf)或终端结点。度不为0的结点称为非终端结点或分支结点。树的度是树内各结点的度的最大值。
孩子及双亲:结点的子树的根称为该结点的孩子(Child),相应地,该结点称为孩子的双亲(Parent)。
层次“结点的层次(Level)是从根结点开始计算起,根为第一层,根的孩子为第二层,依次类推。树中结点的最大层次称为树的深度(Depth)或高度。
如果将树中结点的各子树看成从左至右是有次序的(即不能互换),则称该树为有序树,否则称为无序树。
2、二叉树的基本性质:
二叉树(Binary Tree)的特点是每个结点至多具有两棵子树(即在二叉树中不存在度大于2的结点),并且子树之间有左右之分。
二叉树的性质:
(1)、在二叉树的第i层上至多有2i-1个结点(i≥1)。
(2)、深度为k的二叉树至多有2k-1个结点(k≥1)。
(3)、对任何一棵二叉树,如果其叶子结点数为n0,度为2的结点数为n2,则n0=n2+1。
一棵深度为k且有2^k-1个结点的二叉树称为满二叉树。
可以对满二叉树的结点进行连续编号,约定编号从根结点起,自上而下,自左至右,则由此可引出完全二叉树的定义。深度为k且有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1到n的结点一一对应时,称之为完全二叉树。
(4)、具有n个结点的完全二叉树的深度为不大于log2n的最大整数加1。
(5)、如果对一棵有n个结点的完全二叉树的结点按层序编号(从第1层到最后一层,每层从左到右),则对任一结点i(1≤i≤n),有
a、如果i=1,则结点i是二叉树的根,无双亲;如果i>1,则其双亲是结点x(其中x是不大于i/2的最大整数)。
b、如果2i>n,则结点i无左孩子(结点i为叶子结点);否则其左孩子是结点2i。
c、如果2i+1>n,则结点i无右孩子;否则其右孩子是结点2i+1。
3、二叉查找树基本操作
查找:
在二叉查找树中查找x的过程如下:
1、若二叉树是空树,则查找失败。
2、若x等于根结点的数据,则查找成功,否则。
3、若x小于根结点的数据,则递归查找其左子树,否则。
4、递归查找其右子树。
/**
* 二叉查找树的查找
* @param node
* @param x
*/
public TreeNode Find(TreeNode node,int x){
if(node == null)
return null;
if(x<node.val)
Find(node.left);
else if(x>node.val)
Find(node.right);
else if(x == node.val)
return node;
}
/**
* 查找最小值(递归实现)
* 一直查找左子树,最后一个节点即为最小值
* @param node
*/
public TreeNode FindMin(TreeNode node){
if(node == null)
return null;
else if(node.left == null)
return node;
else {
return FindMin(node.left);
}
}
/**
* 查找最大值(循环实现)
* 一直查找右子树
* @param node
*/
public TreeNode FindMax(TreeNode node){
if(node != null)
while(node.right != null)
node = node.right;
return node;
}
插入:
二叉树查找树b插入操作x的过程如下:
1、若b是空树,则直接将插入的结点作为根结点插入。
2、x等于b的根结点的数据的值,则直接返回,否则。
3、若x小于b的根结点的数据的值,则将x要插入的结点的位置改变为b的左子树,否则。
4、将x要出入的结点的位置改变为b的右子树。
/**
* 添加
* @param x
* @param root
* @return
*/
public TreeNode Insert(int x,TreeNode root){
if(root == null){ //找到要插入的位置,新建一个节点
TreeNode node = new TreeNode(x);
node.left = null;
node.right = null;
}
else if(x<root.val) //如果插入值小于当前值,则应插入左子树
root.left = Insert(x, root.left);
else if(x>root.val) //...
root.right = Insert(x, root.right);
return root;
}
删除:
对于二叉查找树的删除操作(这里根据值删除,而非结点)分三种情况:
不过在此之前,我们应该确保根据给定的值找到了要删除的结点,如若没找到该结点
不会执行删除操作!
下面三种情况假设已经找到了要删除的结点。
1、如果结点为叶子结点(没有左、右子树),此时删除该结点不会玻化树的结构
直接删除即可,并修改其父结点指向它的引用为null.如下图:
2、如果其结点只包含左子树,或者右子树的话,此时直接删除该结点,并将其左子树
或者右子树设置为其父结点的左子树或者右子树即可,此操作不会破坏树结构。
3、 当结点的左右子树都不空的时候,一般的删除策略是用其右子树的最小数据
(容易找到)代替要删除的结点数据并递归删除该结点(此时为null),因为
右子树的最小结点不可能有左孩子,所以第二次删除较为容易。
z的左子树和右子树均不空。找到z的后继y,因为y一定没有左子树,所以可以删除y,
并让y的父亲节点成为y的右子树的父亲节点,并用y的值代替z的值.如图:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09