
二叉树的性质以及二叉查找树的基本操作
1、基本概念
树(Tree)是n(n≥0)个结点的有限集。在任意一棵非空树中:(1)有且仅有一个特定的被称为根(Root)的结点;(2)当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1,T2,…,Tm,其中每一个集合本身又是一棵树,并且称为根的子树(SubTree)。
度:结点拥有的子树数称为结点的度(Degree)。度为0的结点称为叶子(Leaf)或终端结点。度不为0的结点称为非终端结点或分支结点。树的度是树内各结点的度的最大值。
孩子及双亲:结点的子树的根称为该结点的孩子(Child),相应地,该结点称为孩子的双亲(Parent)。
层次“结点的层次(Level)是从根结点开始计算起,根为第一层,根的孩子为第二层,依次类推。树中结点的最大层次称为树的深度(Depth)或高度。
如果将树中结点的各子树看成从左至右是有次序的(即不能互换),则称该树为有序树,否则称为无序树。
2、二叉树的基本性质:
二叉树(Binary Tree)的特点是每个结点至多具有两棵子树(即在二叉树中不存在度大于2的结点),并且子树之间有左右之分。
二叉树的性质:
(1)、在二叉树的第i层上至多有2i-1个结点(i≥1)。
(2)、深度为k的二叉树至多有2k-1个结点(k≥1)。
(3)、对任何一棵二叉树,如果其叶子结点数为n0,度为2的结点数为n2,则n0=n2+1。
一棵深度为k且有2^k-1个结点的二叉树称为满二叉树。
可以对满二叉树的结点进行连续编号,约定编号从根结点起,自上而下,自左至右,则由此可引出完全二叉树的定义。深度为k且有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1到n的结点一一对应时,称之为完全二叉树。
(4)、具有n个结点的完全二叉树的深度为不大于log2n的最大整数加1。
(5)、如果对一棵有n个结点的完全二叉树的结点按层序编号(从第1层到最后一层,每层从左到右),则对任一结点i(1≤i≤n),有
a、如果i=1,则结点i是二叉树的根,无双亲;如果i>1,则其双亲是结点x(其中x是不大于i/2的最大整数)。
b、如果2i>n,则结点i无左孩子(结点i为叶子结点);否则其左孩子是结点2i。
c、如果2i+1>n,则结点i无右孩子;否则其右孩子是结点2i+1。
3、二叉查找树基本操作
查找:
在二叉查找树中查找x的过程如下:
1、若二叉树是空树,则查找失败。
2、若x等于根结点的数据,则查找成功,否则。
3、若x小于根结点的数据,则递归查找其左子树,否则。
4、递归查找其右子树。
/**
* 二叉查找树的查找
* @param node
* @param x
*/
public TreeNode Find(TreeNode node,int x){
if(node == null)
return null;
if(x<node.val)
Find(node.left);
else if(x>node.val)
Find(node.right);
else if(x == node.val)
return node;
}
/**
* 查找最小值(递归实现)
* 一直查找左子树,最后一个节点即为最小值
* @param node
*/
public TreeNode FindMin(TreeNode node){
if(node == null)
return null;
else if(node.left == null)
return node;
else {
return FindMin(node.left);
}
}
/**
* 查找最大值(循环实现)
* 一直查找右子树
* @param node
*/
public TreeNode FindMax(TreeNode node){
if(node != null)
while(node.right != null)
node = node.right;
return node;
}
插入:
二叉树查找树b插入操作x的过程如下:
1、若b是空树,则直接将插入的结点作为根结点插入。
2、x等于b的根结点的数据的值,则直接返回,否则。
3、若x小于b的根结点的数据的值,则将x要插入的结点的位置改变为b的左子树,否则。
4、将x要出入的结点的位置改变为b的右子树。
/**
* 添加
* @param x
* @param root
* @return
*/
public TreeNode Insert(int x,TreeNode root){
if(root == null){ //找到要插入的位置,新建一个节点
TreeNode node = new TreeNode(x);
node.left = null;
node.right = null;
}
else if(x<root.val) //如果插入值小于当前值,则应插入左子树
root.left = Insert(x, root.left);
else if(x>root.val) //...
root.right = Insert(x, root.right);
return root;
}
删除:
对于二叉查找树的删除操作(这里根据值删除,而非结点)分三种情况:
不过在此之前,我们应该确保根据给定的值找到了要删除的结点,如若没找到该结点
不会执行删除操作!
下面三种情况假设已经找到了要删除的结点。
1、如果结点为叶子结点(没有左、右子树),此时删除该结点不会玻化树的结构
直接删除即可,并修改其父结点指向它的引用为null.如下图:
2、如果其结点只包含左子树,或者右子树的话,此时直接删除该结点,并将其左子树
或者右子树设置为其父结点的左子树或者右子树即可,此操作不会破坏树结构。
3、 当结点的左右子树都不空的时候,一般的删除策略是用其右子树的最小数据
(容易找到)代替要删除的结点数据并递归删除该结点(此时为null),因为
右子树的最小结点不可能有左孩子,所以第二次删除较为容易。
z的左子树和右子树均不空。找到z的后继y,因为y一定没有左子树,所以可以删除y,
并让y的父亲节点成为y的右子树的父亲节点,并用y的值代替z的值.如图:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08