
二叉树的性质以及二叉查找树的基本操作
1、基本概念
树(Tree)是n(n≥0)个结点的有限集。在任意一棵非空树中:(1)有且仅有一个特定的被称为根(Root)的结点;(2)当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1,T2,…,Tm,其中每一个集合本身又是一棵树,并且称为根的子树(SubTree)。
度:结点拥有的子树数称为结点的度(Degree)。度为0的结点称为叶子(Leaf)或终端结点。度不为0的结点称为非终端结点或分支结点。树的度是树内各结点的度的最大值。
孩子及双亲:结点的子树的根称为该结点的孩子(Child),相应地,该结点称为孩子的双亲(Parent)。
层次“结点的层次(Level)是从根结点开始计算起,根为第一层,根的孩子为第二层,依次类推。树中结点的最大层次称为树的深度(Depth)或高度。
如果将树中结点的各子树看成从左至右是有次序的(即不能互换),则称该树为有序树,否则称为无序树。
2、二叉树的基本性质:
二叉树(Binary Tree)的特点是每个结点至多具有两棵子树(即在二叉树中不存在度大于2的结点),并且子树之间有左右之分。
二叉树的性质:
(1)、在二叉树的第i层上至多有2i-1个结点(i≥1)。
(2)、深度为k的二叉树至多有2k-1个结点(k≥1)。
(3)、对任何一棵二叉树,如果其叶子结点数为n0,度为2的结点数为n2,则n0=n2+1。
一棵深度为k且有2^k-1个结点的二叉树称为满二叉树。
可以对满二叉树的结点进行连续编号,约定编号从根结点起,自上而下,自左至右,则由此可引出完全二叉树的定义。深度为k且有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1到n的结点一一对应时,称之为完全二叉树。
(4)、具有n个结点的完全二叉树的深度为不大于log2n的最大整数加1。
(5)、如果对一棵有n个结点的完全二叉树的结点按层序编号(从第1层到最后一层,每层从左到右),则对任一结点i(1≤i≤n),有
a、如果i=1,则结点i是二叉树的根,无双亲;如果i>1,则其双亲是结点x(其中x是不大于i/2的最大整数)。
b、如果2i>n,则结点i无左孩子(结点i为叶子结点);否则其左孩子是结点2i。
c、如果2i+1>n,则结点i无右孩子;否则其右孩子是结点2i+1。
3、二叉查找树基本操作
查找:
在二叉查找树中查找x的过程如下:
1、若二叉树是空树,则查找失败。
2、若x等于根结点的数据,则查找成功,否则。
3、若x小于根结点的数据,则递归查找其左子树,否则。
4、递归查找其右子树。
/**
* 二叉查找树的查找
* @param node
* @param x
*/
public TreeNode Find(TreeNode node,int x){
if(node == null)
return null;
if(x<node.val)
Find(node.left);
else if(x>node.val)
Find(node.right);
else if(x == node.val)
return node;
}
/**
* 查找最小值(递归实现)
* 一直查找左子树,最后一个节点即为最小值
* @param node
*/
public TreeNode FindMin(TreeNode node){
if(node == null)
return null;
else if(node.left == null)
return node;
else {
return FindMin(node.left);
}
}
/**
* 查找最大值(循环实现)
* 一直查找右子树
* @param node
*/
public TreeNode FindMax(TreeNode node){
if(node != null)
while(node.right != null)
node = node.right;
return node;
}
插入:
二叉树查找树b插入操作x的过程如下:
1、若b是空树,则直接将插入的结点作为根结点插入。
2、x等于b的根结点的数据的值,则直接返回,否则。
3、若x小于b的根结点的数据的值,则将x要插入的结点的位置改变为b的左子树,否则。
4、将x要出入的结点的位置改变为b的右子树。
/**
* 添加
* @param x
* @param root
* @return
*/
public TreeNode Insert(int x,TreeNode root){
if(root == null){ //找到要插入的位置,新建一个节点
TreeNode node = new TreeNode(x);
node.left = null;
node.right = null;
}
else if(x<root.val) //如果插入值小于当前值,则应插入左子树
root.left = Insert(x, root.left);
else if(x>root.val) //...
root.right = Insert(x, root.right);
return root;
}
删除:
对于二叉查找树的删除操作(这里根据值删除,而非结点)分三种情况:
不过在此之前,我们应该确保根据给定的值找到了要删除的结点,如若没找到该结点
不会执行删除操作!
下面三种情况假设已经找到了要删除的结点。
1、如果结点为叶子结点(没有左、右子树),此时删除该结点不会玻化树的结构
直接删除即可,并修改其父结点指向它的引用为null.如下图:
2、如果其结点只包含左子树,或者右子树的话,此时直接删除该结点,并将其左子树
或者右子树设置为其父结点的左子树或者右子树即可,此操作不会破坏树结构。
3、 当结点的左右子树都不空的时候,一般的删除策略是用其右子树的最小数据
(容易找到)代替要删除的结点数据并递归删除该结点(此时为null),因为
右子树的最小结点不可能有左孩子,所以第二次删除较为容易。
z的左子树和右子树均不空。找到z的后继y,因为y一定没有左子树,所以可以删除y,
并让y的父亲节点成为y的右子树的父亲节点,并用y的值代替z的值.如图:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25