京公网安备 11010802034615号
经营许可证编号:京B2-20210330
量子计算机将如何改变AI、机器学习、大数据?答案是更快更强
据福布斯杂志报道,我们每天能产生2.5EB(约合10亿GB)数据,这相当于25万个美国国会图书馆或500万台笔记本电脑记录的内容。我们有32亿个全球互联网用户,他们每分钟在Pinterest上发布9722个Pin,在Twitter发布347222条消息,在Facebook上留下420万个“点赞”,我们还通过拍照和视频、保存文件、打开账户等行为产生其他大量数据。
我们正处于传统计算机数据处理能力的极限,而数据却依然在不断增长。虽然摩尔定律(Moore’s Law)预测集成电路上的晶体管数量每隔两年就会翻一番,但自1965年这个术语出现以来,事实证明它具有很强的弹性。随着技术的进步,这些晶体管现在的体积越来越小。正因为如此,业界领导者们展开了激烈竞争,看谁能首先要推出一款比现有计算机更强大的量子计算机,来处理我们每天产生的所有数据,并解决日益复杂的问题。
量子计算机能快速解决复杂问题
当这些行业领袖成功地制造出商业上可行的量子计算机时,那么这些计算机就有可能在几秒钟内完成庞大的计算量,这些任务可能需要传统计算机花费数千年时间才能完成。
今天,谷歌宣称已经拥有这样一种量子计算机,据说它的速度比当今任何一种计算系统都快1亿倍。如果我们能用它处理生成的大量数据并解决非常复杂的问题,那将是至关重要的。成功的关键是把现实世界中的问题转化为量子语言。
我们生成的数据集的复杂性和增长规模远比计算技术进步快得多,因此对我们的计算结构造成了相当大的压力。虽然今天的计算机难以解决或无法解决某些问题,但这些问题预计将被量子计算机在几秒钟内破解。
据预测,人工智能(AI),尤其是机器学习,可以从量子计算技术的进步中获益,而且还会继续持续下去,即使是在完整的量子计算解决方案出现之前。量子计算算法使我们能够增强机器学习的能力。
量子计算机将优化解决方案
量子计算将促进数字革命的另一种方式是,我们能够对数据进行采样,并优化我们遇到的各种问题(从组合分析到最佳递送路线等),甚至能帮助确定每个人的最佳治疗方案和医疗方案。
我们正处在大数据增长的关键点上,我们已经改变了我
们的计算机架构,这就需要用不同的计算方法来处理大数据。它不仅规模更大,而且我们要解决的问题也变得不同。量子计算机更能有效地解决连续性问题。他们给予企业甚至消费者做出更好决策的能力,而这正是说服企业在新技术方面投资所需要的。
量子计算机可以识别大数据集中的模式
预计量子计算将能够搜索非常大的、未排序的数据集,以非常快的速度发现模式或异常。量子计算机可以同时访问数据库中的所有条目,从而在几秒钟内识别出这些相似点。虽然这在理论上是可能的,但它只发生在一个并行的计算机上,并且只能以一个接一个的方式查看每个记录,所以它花费了大量的时间,并且取决于数据集的大小,它可能永远不会成为现实。
量子计算机可以帮助整合不同数据集的数据
此外,由于可被用于整合不同的数据集,量子计算机有望获得巨大突破。虽然这在没有人类介入的情况下可能是困难的,但是人类的参与将帮助计算机学会如何在未来整合数据。
因此,如果有不同独特模式的原始数据源,并有研究团队想要比较它们,那么在数据被比较值钱,计算机就必须理解模式之间的关系。为了实现这个目标,需要在分析自然语言的语义方面取得突破,而这正是AI面临的最大挑战之一。然而,人类可以提供输入,然后对未来系统进行训练。
最终,量子计算机将允许快速分析和整合庞大的数据集,这些数据集将改进和改变我们的机器学习和AI能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27