京公网安备 11010802034615号
经营许可证编号:京B2-20210330
量子计算机将如何改变AI、机器学习、大数据?答案是更快更强
据福布斯杂志报道,我们每天能产生2.5EB(约合10亿GB)数据,这相当于25万个美国国会图书馆或500万台笔记本电脑记录的内容。我们有32亿个全球互联网用户,他们每分钟在Pinterest上发布9722个Pin,在Twitter发布347222条消息,在Facebook上留下420万个“点赞”,我们还通过拍照和视频、保存文件、打开账户等行为产生其他大量数据。
我们正处于传统计算机数据处理能力的极限,而数据却依然在不断增长。虽然摩尔定律(Moore’s Law)预测集成电路上的晶体管数量每隔两年就会翻一番,但自1965年这个术语出现以来,事实证明它具有很强的弹性。随着技术的进步,这些晶体管现在的体积越来越小。正因为如此,业界领导者们展开了激烈竞争,看谁能首先要推出一款比现有计算机更强大的量子计算机,来处理我们每天产生的所有数据,并解决日益复杂的问题。
量子计算机能快速解决复杂问题
当这些行业领袖成功地制造出商业上可行的量子计算机时,那么这些计算机就有可能在几秒钟内完成庞大的计算量,这些任务可能需要传统计算机花费数千年时间才能完成。
今天,谷歌宣称已经拥有这样一种量子计算机,据说它的速度比当今任何一种计算系统都快1亿倍。如果我们能用它处理生成的大量数据并解决非常复杂的问题,那将是至关重要的。成功的关键是把现实世界中的问题转化为量子语言。
我们生成的数据集的复杂性和增长规模远比计算技术进步快得多,因此对我们的计算结构造成了相当大的压力。虽然今天的计算机难以解决或无法解决某些问题,但这些问题预计将被量子计算机在几秒钟内破解。
据预测,人工智能(AI),尤其是机器学习,可以从量子计算技术的进步中获益,而且还会继续持续下去,即使是在完整的量子计算解决方案出现之前。量子计算算法使我们能够增强机器学习的能力。
量子计算机将优化解决方案
量子计算将促进数字革命的另一种方式是,我们能够对数据进行采样,并优化我们遇到的各种问题(从组合分析到最佳递送路线等),甚至能帮助确定每个人的最佳治疗方案和医疗方案。
我们正处在大数据增长的关键点上,我们已经改变了我
们的计算机架构,这就需要用不同的计算方法来处理大数据。它不仅规模更大,而且我们要解决的问题也变得不同。量子计算机更能有效地解决连续性问题。他们给予企业甚至消费者做出更好决策的能力,而这正是说服企业在新技术方面投资所需要的。
量子计算机可以识别大数据集中的模式
预计量子计算将能够搜索非常大的、未排序的数据集,以非常快的速度发现模式或异常。量子计算机可以同时访问数据库中的所有条目,从而在几秒钟内识别出这些相似点。虽然这在理论上是可能的,但它只发生在一个并行的计算机上,并且只能以一个接一个的方式查看每个记录,所以它花费了大量的时间,并且取决于数据集的大小,它可能永远不会成为现实。
量子计算机可以帮助整合不同数据集的数据
此外,由于可被用于整合不同的数据集,量子计算机有望获得巨大突破。虽然这在没有人类介入的情况下可能是困难的,但是人类的参与将帮助计算机学会如何在未来整合数据。
因此,如果有不同独特模式的原始数据源,并有研究团队想要比较它们,那么在数据被比较值钱,计算机就必须理解模式之间的关系。为了实现这个目标,需要在分析自然语言的语义方面取得突破,而这正是AI面临的最大挑战之一。然而,人类可以提供输入,然后对未来系统进行训练。
最终,量子计算机将允许快速分析和整合庞大的数据集,这些数据集将改进和改变我们的机器学习和AI能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16