京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的未来:人们应该意识到的10个预测
到了2020年,世界上每个人每秒将创造7 MB的数据。在过去的几年里,我们已经创造了比人类历史上更多的数据。大数据席卷全球,并且没有放缓的迹象。人们可能会想,“大数据产业从哪里开始?”以下有10个大数据预测可以回答这个有趣的问题。
1、机器学习将成为大数据应用的下一件大事
当今最热门的技术趋势之一就是机器学习,它也将在未来的大数据中发挥重要作用。根据调研机构Ovum的预测,机器学习将在大数据革命的最前沿。它将帮助企业准备数据并进行预测分析,从而使企业能够轻松克服未来的挑战。
2、隐私将成为最大的挑战
无论是物联网还是大数据,新兴技术面临的最大挑战是数据的安全性和隐私性。人们现在正在创建的数据量以及将来创建的数据量将使隐私更为重要,因为风险将大大提高。据调研机构Gartne公司的研究,到2018年,超过50%的商业道德违规将与数据有关。数据安全和隐私问题将成为大数据行业面临的最大障碍,如果不能有效应对数据安全问题,我们将会看到一大批技术趋势将会昙花一现。
3、将会出现首席数据官这个新的职位
人们可能熟悉首席执行官(CEO),首席营销官(CMO)和首席信息官(CIO),但是否听说过首席数据官(CDO)?如果答案是否定的话,别担心,因为很快就会知道。据调研机构Forrester公司的研究,将会出现首席数据官这个新的职位,企业将任命首席数据官。虽然,首席数据官的任命完全取决于业务类型及其数据需求,但是各行业厂商广泛采用大数据技术,聘请首席数据官将成为常态。
4、数据科学家的需求量很大
如果IT人员仍然不确定选择哪条职业道路,那么最好地选择是开始在数据科学领域的职业生涯。随着数据量的增长和大数据应用的增长,组织对数据科学家、分析师和数据管理专家的需求将激增。数据专业人员的需求与可用性之间的差距将会扩大。这将有助于数据科学家和分析师获得更高的薪酬。那么还在等什么?深入数据科学的世界,将会拥有更美好的未来。
5、企业将购买算法,而不是软件
人们将看到对软件的业务方法将有360度的转变。越来越多的企业将寻求购买算法而不是创建自己的算法。在购买算法后,企业可以自己添加数据。与购买软件相比,购买算法可以为企业提供更多的自定义选项。企业无法根据需要调整软件。事实上,正好相反。企业的业务必须根据软件流程进行调整,但所有这些都将随着销售服务的算法成为重点而结束。
6、对大数据技术的投资将会大幅增长
调研机构IDC分析师表示,“大数据和业务分析的总收入将从2015年的1,220亿美元增加到2019年的1870亿美元。”2017年大数据的业务支出将超过570亿美元。尽管对大数据的商业投资可能因行业而异,但大数据支出的增长将保持一致。制造业将在大数据技术方面投入最多,医疗保健,银行业和资源行业将是最快采用的行业领域。
7、更多的开发人员将加入大数据革命
据统计,目前有600万开发人员正在使用大数据和使用高级分析。这将是世界上33%以上的开发人员。更令人惊奇的是,大数据才刚刚开始,未来数年将出现大量开发大型数据的应用程序,其数量激增。有了更高薪水的经济回报,开发人员就喜欢创建能够处理大数据的应用程序。
8、规范分析将成为商业智能软件的一部分
企业必须为所有业务购买专用软件的时代已经一去不复返了。今天,企业需要单一软件,提供他们所需的所有功能。商业智能软件也将遵循这一趋势,我们将看到在未来添加到该软件的规范分析功能。
IDC公司预测,一半的商业分析软件将采用建立在认知计算功能之上的规范分析。这将有助于企业在适当的时候做出明智的决定。随着软件的智能化,企业可以快速筛选大量的数据,从而获得比竞争对手更大的竞争优势。
9、大数据将帮助企业打破生产力记录
如果企业投资大数据,可以带来更高的投资回报,特别是在提高业务生产力方面。据IDC介绍,投资于这项技术并能快速分析大量数据并提取可操作信息的组织,在生产率方面比竞争对手获得更多的收益。记住,关键是行动。企业需要可付诸行动的信息使其生产力提升到新的高度。
10、大数据将被快速和可操作的数据替代
据一些大数据专家介绍,大数据已经死亡。他们认为,企业甚至没有使用他们能够访问的一小部分数据,而大数据并不总是意味着更好、更快,迟早有一天,大数据将被快速和可操作的数据所取代,这将有助于企业在正确的时间做出正确的决定。企业拥有大量数据,只有有效和快速地分析这些数据,并从中提取可操作的信息,才会带来更多的竞争优势。HERO译
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22