京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对于坐拥海量数据的金融企业来说,大数据治理意味着什么
玉不琢不成器,一块没有经过雕琢的美玉,需要经过琢磨打造之后,才能显现出它的真正价值。对于金融企业来说,数据不只包括自身业务系统中为支撑正常业务流转的数据,还包括从外界交易流中收获的大量第三方数据,这些数据就像是未经雕琢的美玉,需要“大数据治理”这一“雕琢”的过程来对数据进行价值发现。
图:经过雕琢之后的美玉
一、为什么大数据治理在金融行业这么火?
早在几年前甚至更早,国内各大金融机构就开始尝试大数据治理相关建设,纷纷将大数据治理作为一项基础性工作,其中比较早的有国家开发银行等,北京银行、中信银行、华夏银行等也随后开始了大数据治理项目。
多位金融专家曾指出,大数据治理能获得国内金融企业广泛重视的原因主要有以下几点:
1、日趋严格的监管要求金融机构开展大数据治理
外部监管和审计对大数据治理的刚性需求是金融行业普遍重视大数据治理的一个重要原因。
金融业作为国家命脉, 受巴塞尔协议III等协议影响,受人民银行、银监会、外管局等部门的多口监管。2006 年,银监会制定了我国商业银行分步实施新资本协议的指导意见,要求金融企业对风险实现资本计量,并以此为基础进一步提出了“腕骨”监管原则;随后,《商业银行信息科技风险管理指引》对金融企业数据治理提出了明确的要求;再有,财政部、国资委、证监会等部门也纷纷对金融企业提出了一些与风险管理、内部控制相关的要求,数据治理也是其中的重点。
就目前趋势来看,未来几年,监管部门很可能进一步完善监管细则,对金融企业数据的完整性、准确性、一致性、有效性和及时性提出更高的要求。
2、金融机构的风险管理离不开大数据治理
金融机构的信贷管理部门需要密切关注贷款分类及客户信息的变动,通过大数据治理来保障资产分类的准确性,这对于金融机构减少非预期损失十分关键。
对于金融机构来说,第三方数据质量的保证尤为重要,大数据治理可帮助金融机构提高第三方数据的质量,方便金融机构对非结构化信息进行梳理,精准地计算出客户的信用情况和违约概率,构建出新的信用评价模型,打造智能化引擎支持的“直通式”全流程在线融资服务模式,最大化提高融资效率,降低信贷风险。
3、金融机构的业务运营和创新需要大数据治理
大数据治理是金融机构业务运营的需要。数据是金融的生命线,金融企业在日常运营中会积累大量数据,这些数据除了支持前台业务流程运转之外,越来越多地被用于企业的决策支持,不同业务系统之间的数据一致性对于保障各项业务的有效开展非常重要,突发事件发生时,数据的完整性和可用性在很大程度上决定了关键业务系统是否能及时恢复。而数据一致性、完整性、可用性的提高均属于大数据治理的范畴。
大数据治理是金融机构业务创新的需要。金融全球化和金融脱媒的加速使金融机构之间的竞争越来越激烈,传统的经营方式面临极大的挑战,“以客户为中心”的经营理念需要金融机构全面收集信息,在传统存贷汇业务的基础上提出业务模式创新。这些创新需要利用工具对业务数据进行挖掘分析,大数据治理是分析结果准确的基础。
二、金融行业该如何开展大数据治理相关工作?
金融业是个比较特殊的行业,与其他行业相比,其大数据治理相关工作开展得比较早,普元在金融领域做大数据治理的成功案例比较多,根据国内各大金融机构的大数据治理的实践,总结出了金融机构开展大数据治理相关工作的一些方法:
1、自上而下,推动大数据治理的相关建设
对金融企业来说,大数据治理的提出和落地的关键离不开金融机构高层领导自上而下的推动。目前,领导意志和高层推动几乎是所有金融大数据治理项目成败的关键。在项目初期,各个部门之间的协调需要强有力的高层来自上而下进行推动,当后期大数据治理走上正轨,各部门利益和治理效果绑定之后,也需要高层进行把关,将这些KPI落实下去。
2、摸清家底,全面了解企业大数据资产全貌
对于金融机构来说,数据往往分布在不同的部门,这些数据的用途、结构、价值和质量水平各有差异,通常在金融机构各个系统中呈现碎片化分布。因此,金融机构在做大数据治理之前,应该先“摸清家底”,通过元数据管理工具,自动抽取企业内部所有元数据,全面梳理企业内部整个大数据资产,根据展现出来的企业数据地图,了解企业大数据资产全貌,为后面的大数据治理工作打下基础。
3、标准先行,支撑大数据治理的有效开展
目前国内金融机构纷纷加强了行业层面的数据标准工作。通常是依据数据标准管理相关办法,落实数据标准管理相关人员的职责,并紧扣数据标准管理的流程规范,持续对已有的数据标准管理框架进行优化。通过这种方法,推动与其他金融机构之间、与监管机构之间、与外部机构之间的信息交换和共享,支撑大数据治理的有效开展。
4、狠抓质量,确保大数据治理的实际落地
可以说,大数据质量的提升是金融机构开展大数据治理相关工作的最终目的。目前,有部分金融机构已经将大数据的管理和应用纳入全行统一的数据质量规划范畴,参照已正式发布的数据标准,整理新建项目的业务范围和系统规划,在数据质量规划的要求下酌情对已经建设完成的系统进行适应性改造。
三、金融行业大数据治理应该抓住哪些关键点?
1、合理选择元数据管理工具——用自动采集代替人工录入,保障数据标准落地
与其他行业相比,金融业务非常复杂,无论是数据项还是数据量都庞杂无比,单靠人工对元数据进行梳理远远满足不了要求,必须选择一款功能强大的元数据管理工具来实现自动化的元数据采集,通过元数据管理,保障数据标准的落地。
图:普元元数据管理工具的自动化采集能力
2、从需求开始控制数据质量——将质量控制前移,从源头解决数据质量问题
随着近年来金融监管各方对数据质量要求的日益提高,建立一个完善的数据质量管理体系的迫切性越来越显著。金融机构可以将数据质量管理嵌入系统开发周期的全过程,确保在系统开发阶段就做到数据质量问题的预防。
图:从需求开始控制数据质量
现在金融机构在控制数据质量的时候容易出现一个问题,就是只对已经产生的数据做检查,再将错误数据剔除,这种方法治标不治本,不能从源头上解决数据质量问题。要想真正解决数据质量问题,应该从需求开始,将数据质量服务集成到需求分析人员、模型设计人员与开发人员的工作环境中,在数据的全生命周期中控制数据质量。
3、将数据治理共享成为服务——“以应促治”,推动数据治理工作的开展
为更好地推动数据治理相关工作,金融企业应该提供多种多样的大数据治理服务,把大数据治理工作融入到企业的各个系统中,帮助业务部门更简单,更方便地应用数据标准,让大家在日常的工作环境中就能控制数据质量,推动数据治理工作的开展,在全行形成数据治理的合力。
图:数据治理服务化
比如,通过业务元数据服务,可以让业务人员在不通过技术人员的帮助下,就能够查询到一些业务术语和业务术语之间的关系,自助进行报表开发,让报表开发变得更高效;通过数据标准服务,可以让技术人员在为系统进行建模时,就能够查询到各种数据标准,让数据标准在建模的时候就能够得到落实等。
四、普元在金融行业的大数据治理实践
普元自2008年就开始涉足大数据治理领域,7年来一直走在整个业界的前列。普元大数据治理平台Primeton Data Governance,以元数据为核心,融合了大数据标准、大数据质量、主数据、大数据交换集成、大数据资产化、大数据共享发布等多种成熟的产品和方案,旨在为企业提供从大数据治理咨询到工具支撑再到落地实施的一体化解决方案。
图:普元大数据治理整体架构
目前普元大数据治理平台已经成功应用到金融、电信、制造、政府、电力等各大行业,特别是在金融行业拥有大量的大数据治理成功实施案例,其中包括国家开发银行、中信银行、北京银行、上海银行、华夏银行等国内重点金融企业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26