
详解python中的json的基本使用方法
在Python中使用json的时候,主要也就是使用json模块,json是以一种良好的格式来进行数据的交互,从而在很多时候,可以使用json数据格式作为程序之间的接口。
#!/usr/bin/env python
#-*- coding:utf-8 -*-
import json
print json.load(open('kel.txt'))
#deserialize string or unicode to python object
j = json.loads(open('kel.txt').read(),encoding='utf-8')
print type(j),j
for i in j:
print i
k = json.dumps(j,encoding='utf-8').decode('utf-8')
print k
kel.txt文件内容如下:
{
"中文":"kel",
"fist":"kel"
}
执行结果如下:
{u'\u4e2d\u6587': u'kel', u'fist': u'kel'}
<type 'dict'> {u'\u4e2d\u6587': u'kel', u'fist': u'kel'}
中文
fist
{"\u4e2d\u6587": "kel", "fist": "kel"}
在其中主要使用的方法为json.loads和json.dumps
注意在loads中参数必须为string,从而在打开文件的时候,要使用read方法,否则会出错。
loads方法主要是用来加载json数据变成python中的对象,而dumps方法主要是将python对象修改为json格式。
开始遇到一个错误如下:
[root@python 56]# python kel.py
Traceback (most recent call last):
File "kel.py", line 5, in <module>
json.load(open('kel.txt'))
File "/usr/local/python/lib/python2.7/json/__init__.py", line 291, in load
**kw)
File "/usr/local/python/lib/python2.7/json/__init__.py", line 339, in loads
return _default_decoder.decode(s)
File "/usr/local/python/lib/python2.7/json/decoder.py", line 364, in decode
obj, end = self.raw_decode(s, idx=_w(s, 0).end())
File "/usr/local/python/lib/python2.7/json/decoder.py", line 382, in raw_decode
raise ValueError("No JSON object could be decoded")
ValueError: No JSON object could be decoded
主要原因是因为,,,在json的数据格式中必须是双引号开头的,错误的json文件如下:
{
"fist":'kel'
}
kel.py内容如下:
#!/usr/bin/env python
#-*- coding:utf-8 -*-
import json
j = json.loads(open('kel.txt').read())
print type(j),j
双引号。。。单引号,傻傻的分不清楚
有的时候,在进行loads方法的时候,就是因为产生了单引号的字符串。。。在python中尤其如此,和其他的东西没啥关系,主要就是引号的关系!!!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12