
浅析Python中的多重继承
这篇文章主要介绍了Python中的多重继承,是Python学习中的基本知识,代码基于Python2.x版本,需要的朋友可以参考下
继承是面向对象编程的一个重要的方式,因为通过继承,子类就可以扩展父类的功能。
回忆一下Animal类层次的设计,假设我们要实现以下4种动物:
Dog - 狗狗;
Bat - 蝙蝠;
Parrot - 鹦鹉;
Ostrich - 鸵鸟。
如果按照哺乳动物和鸟类归类,我们可以设计出这样的类的层次:
但是如果按照“能跑”和“能飞”来归类,我们就应该设计出这样的类的层次:
如果要把上面的两种分类都包含进来,我们就得设计更多的层次:
哺乳类:能跑的哺乳类,能飞的哺乳类;
鸟类:能跑的鸟类,能飞的鸟类。
这么一来,类的层次就复杂了:
如果要再增加“宠物类”和“非宠物类”,这么搞下去,类的数量会呈指数增长,很明显这样设计是不行的。
正确的做法是采用多重继承。首先,主要的类层次仍按照哺乳类和鸟类设计:
class Animal(object):
pass
# 大类:
class Mammal(Animal):
pass
class Bird(Animal):
pass
# 各种动物:
class Dog(Mammal):
pass
class Bat(Mammal):
pass
class Parrot(Bird):
pass
class Ostrich(Bird):
pass
现在,我们要给动物再加上Runnable和Flyable的功能,只需要先定义好Runnable和Flyable的类:
class Runnable(object):
def run(self):
print('Running...')
class Flyable(object):
def fly(self):
print('Flying...')
对于需要Runnable功能的动物,就多继承一个Runnable,例如Dog:
class Dog(Mammal, Runnable):
pass
对于需要Flyable功能的动物,就多继承一个Flyable,例如Bat:
class Bat(Mammal, Flyable):
pass
通过多重继承,一个子类就可以同时获得多个父类的所有功能。
Mixin
在设计类的继承关系时,通常,主线都是单一继承下来的,例如,Ostrich继承自Bird。但是,如果需要“混入”额外的功能,通过多重继承就可以实现,比如,让Ostrich除了继承自Bird外,再同时继承Runnable。这种设计通常称之为Mixin。
为了更好地看出继承关系,我们把Runnable和Flyable改为RunnableMixin和FlyableMixin。类似的,你还可以定义出肉食动物CarnivorousMixin和植食动物HerbivoresMixin,让某个动物同时拥有好几个Mixin:
class Dog(Mammal, RunnableMixin, CarnivorousMixin):
pass
Mixin的目的就是给一个类增加多个功能,这样,在设计类的时候,我们优先考虑通过多重继承来组合多个Mixin的功能,而不是设计多层次的复杂的继承关系。
Python自带的很多库也使用了Mixin。举个例子,Python自带了TCPServer和UDPServer这两类网络服务,而要同时服务多个用户就必须使用多进程或多线程模型,这两种模型由ForkingMixin和ThreadingMixin提供。通过组合,我们就可以创造出合适的服务来。
比如,编写一个多进程模式的TCP服务,定义如下:
class MyTCPServer(TCPServer, ForkingMixin):
pass
编写一个多线程模式的UDP服务,定义如下:
class MyUDPServer(UDPServer, ThreadingMixin):
pass
如果你打算搞一个更先进的协程模型,可以编写一个CoroutineMixin:
class MyTCPServer(TCPServer, CoroutineMixin):
pass
这样一来,我们不需要复杂而庞大的继承链,只要选择组合不同的类的功能,就可以快速构造出所需的子类。
小结
由于Python允许使用多重继承,因此,Mixin就是一种常见的设计。
只允许单一继承的语言(如Java)不能使用Mixin的设计。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14