SPSS统计基础---信度分析
可靠性分析允许您研究测量尺度的属性以及组成这些标度的项。“可靠性分析”过程计算标度可靠性的众多常用度量,还提供关于标度中的各项之间关系的信息。类内相关系数可用来计算评分者间的可靠性估计。
示例。我的调查表能以有用的方式度量客户满意度吗?使用可靠性分析,您可以确定调查表中各项的相互关联程度,可以获取重复性的总体指标或作为一个整体的标度的内部一致性,并且可以识别应从标度中排除的问题项。
统计量。每个变量和标度的描述、跨项的摘要统计量、项之间的相关性和协方差、可靠性估计、ANOVA 表、类内相关系数、Hotelling T2 以及Tukey 的可加性检验。
模型。以下可靠性模型可用:
Alpha (Cronbach)。此模型是内部一致性模型,基于平均的项之间的相关性。
半分。此模型将标度分割成两个部分,并检查两部分之间的相关性。
Guttman。此模型计算Guttman 的下界以获取真实可靠性。
平行。此模型假设所有项具有相等的方差,并且重复项之间具有相等的误差方差。
严格平行。此模型假设为平行模型,还假设所有项具有相等的均值。
数据。数据可以是二分数据、有序数据或区间数据,但数据应是用数值编码的。
假设。观察值应是独立的,且项与项之间的误差应是不相关的。每对项应具有二元正态分布。标度应是可加的,以便每一项都与总得分线性相关。
相关过程。如果想要探索标度项的维数(以查明是否需要多个结构来代表项得分的模式),则使用因子分析或多维尺度。要标识同类变量组,可使用系统聚类分析以使变量聚类。
获取可靠性分析
从菜单中选择:
分析> 尺度> 可靠性分析
可靠性分析统计量
Alpha 模型。系数alpha;对于二分数据,它等同于Kuder-Richardson 20 (KR20)系数。
半分模型。形式之间的相关性、Guttman 半分可靠性、Spearman-Brown 可靠性(相等长度和不相等长度)以及每一半的alpha 系数。
Guttman 模型。可靠性系数lambda 1 到lambda 6。
平行和严格平行模型。模型拟合优度检验;误差方差的估计值、公共方差和真实方差;估计的公共项间相关性;估计的可靠性以及可靠性的无偏估计。
描述性。为跨个案的标度或项生成描述统计。
项。为跨个案的项生成描述统计。
标度。为标度生成描述统计。
标度(如果项已删除)。显示将每一项与由其他项组成的标度进行比较时的摘要统计量。这些统计量包括:该项从标度中删除时的标度均值和方差、该项与由其他项组成的标度之间的相关性,以及该项从标度中删除时的Cronbach alpha 值。
摘要。提供跨标度中所有项的项分布的描述统计。
均值. 项均值的摘要统计量。显示项均值的最小、最大和平均值,项均值的范围和方差,以及最大项均值与最小项均值的比。
方差. 项方差的摘要统计量。显示项方差的最小、最大和平均值,项方差的范围和方差,以及最大项方差与最小项方差的比。
协方差. 项间协方差的摘要统计量。显示项之间的协方差的最小、最大和平均值,项之间的协方差的范围和方差,以及最大项之间协方差与最小项之间的协方差的比。
相关性. 项之间的相关性的摘要统计量。显示项之间的相关性的最小、最大和平均值,项间相关性的范围和方差,以及最大项之间的相关性与最小项之间的相关性的比。
项之间。生成项与项之间的相关矩阵或协方差矩阵。
ANOVA 表。生成相等均值的检验。
F 检验. 显示重复度量方差分析表。
Friedman 卡方. 显示Friedman 的卡方Kendall 的协同系数。此选项适用于以秩为形式的数据。卡方检验在ANOVA 表中替换通常的F 检验。
Cochran 卡方. 显示Cochrans Q。此选项适用于双分支。Q 统计在ANOVA 表中替换通常的F 统计。
Hotelling 的T 平方。生成以下原假设的多变量检验:标度上的所有项具有相同的均值。
Tukey 的可加性检验。生成以下假设的检验:项中不存在可乘交互关系。
类内相关系数。生成个案内值的一致性或符合度的测量。
模型。选择用于计算类内相关系数的模型。可用的模型为双向混合、双向随机和单向随机。当人为影响是随机的,而项的作用固定时,选择双向混合;当人为影响和项的作用均为随机时选择双向随机。当人为影响随机时选择单向随机。
类型。选择指标类型。可用的类型为“一致”和“绝对一致”。
置信区间。指定置信区间的置信度。缺省值为95%。
检验值。指定假设检验系数的假设值。该值是用来与观察值进行比较的值。缺省值为0。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03