
SPSS统计基础---信度分析
可靠性分析允许您研究测量尺度的属性以及组成这些标度的项。“可靠性分析”过程计算标度可靠性的众多常用度量,还提供关于标度中的各项之间关系的信息。类内相关系数可用来计算评分者间的可靠性估计。
示例。我的调查表能以有用的方式度量客户满意度吗?使用可靠性分析,您可以确定调查表中各项的相互关联程度,可以获取重复性的总体指标或作为一个整体的标度的内部一致性,并且可以识别应从标度中排除的问题项。
统计量。每个变量和标度的描述、跨项的摘要统计量、项之间的相关性和协方差、可靠性估计、ANOVA 表、类内相关系数、Hotelling T2 以及Tukey 的可加性检验。
模型。以下可靠性模型可用:
Alpha (Cronbach)。此模型是内部一致性模型,基于平均的项之间的相关性。
半分。此模型将标度分割成两个部分,并检查两部分之间的相关性。
Guttman。此模型计算Guttman 的下界以获取真实可靠性。
平行。此模型假设所有项具有相等的方差,并且重复项之间具有相等的误差方差。
严格平行。此模型假设为平行模型,还假设所有项具有相等的均值。
数据。数据可以是二分数据、有序数据或区间数据,但数据应是用数值编码的。
假设。观察值应是独立的,且项与项之间的误差应是不相关的。每对项应具有二元正态分布。标度应是可加的,以便每一项都与总得分线性相关。
相关过程。如果想要探索标度项的维数(以查明是否需要多个结构来代表项得分的模式),则使用因子分析或多维尺度。要标识同类变量组,可使用系统聚类分析以使变量聚类。
获取可靠性分析
从菜单中选择:
分析> 尺度> 可靠性分析
可靠性分析统计量
Alpha 模型。系数alpha;对于二分数据,它等同于Kuder-Richardson 20 (KR20)系数。
半分模型。形式之间的相关性、Guttman 半分可靠性、Spearman-Brown 可靠性(相等长度和不相等长度)以及每一半的alpha 系数。
Guttman 模型。可靠性系数lambda 1 到lambda 6。
平行和严格平行模型。模型拟合优度检验;误差方差的估计值、公共方差和真实方差;估计的公共项间相关性;估计的可靠性以及可靠性的无偏估计。
描述性。为跨个案的标度或项生成描述统计。
项。为跨个案的项生成描述统计。
标度。为标度生成描述统计。
标度(如果项已删除)。显示将每一项与由其他项组成的标度进行比较时的摘要统计量。这些统计量包括:该项从标度中删除时的标度均值和方差、该项与由其他项组成的标度之间的相关性,以及该项从标度中删除时的Cronbach alpha 值。
摘要。提供跨标度中所有项的项分布的描述统计。
均值. 项均值的摘要统计量。显示项均值的最小、最大和平均值,项均值的范围和方差,以及最大项均值与最小项均值的比。
方差. 项方差的摘要统计量。显示项方差的最小、最大和平均值,项方差的范围和方差,以及最大项方差与最小项方差的比。
协方差. 项间协方差的摘要统计量。显示项之间的协方差的最小、最大和平均值,项之间的协方差的范围和方差,以及最大项之间协方差与最小项之间的协方差的比。
相关性. 项之间的相关性的摘要统计量。显示项之间的相关性的最小、最大和平均值,项间相关性的范围和方差,以及最大项之间的相关性与最小项之间的相关性的比。
项之间。生成项与项之间的相关矩阵或协方差矩阵。
ANOVA 表。生成相等均值的检验。
F 检验. 显示重复度量方差分析表。
Friedman 卡方. 显示Friedman 的卡方Kendall 的协同系数。此选项适用于以秩为形式的数据。卡方检验在ANOVA 表中替换通常的F 检验。
Cochran 卡方. 显示Cochrans Q。此选项适用于双分支。Q 统计在ANOVA 表中替换通常的F 统计。
Hotelling 的T 平方。生成以下原假设的多变量检验:标度上的所有项具有相同的均值。
Tukey 的可加性检验。生成以下假设的检验:项中不存在可乘交互关系。
类内相关系数。生成个案内值的一致性或符合度的测量。
模型。选择用于计算类内相关系数的模型。可用的模型为双向混合、双向随机和单向随机。当人为影响是随机的,而项的作用固定时,选择双向混合;当人为影响和项的作用均为随机时选择双向随机。当人为影响随机时选择单向随机。
类型。选择指标类型。可用的类型为“一致”和“绝对一致”。
置信区间。指定置信区间的置信度。缺省值为95%。
检验值。指定假设检验系数的假设值。该值是用来与观察值进行比较的值。缺省值为0。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29