京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据为保险业提供另一种视角_数据分析师
在客户需求的精确锁定方面,大数据给保险业带来了很多便利。以前,对于客户的分类局限于“客户属于哪一类”,而现在,则扩展到“客户是哪一类”。
传统的精算技术只在一定纬度量化风险,很难充分反映风险的复杂性。而在互联网大数据时代,则前所未有的创造了风控每个投保标的的可能,从未有过如此多纬度、低成本的数据,如此系统、新鲜地提供给保险业。
什么星座的人最喜欢买保险?哪个地区的人最喜欢给自己买保险?这些曾经看起来无关乎保费的问题,在互联网大数据时代背景下,也成为了险企定位客户的另一种视角。在泰康人寿的保单中,最喜欢买保险的是天秤座,而最不喜欢买保险的是白羊座;最喜欢给自己买保险的是宁波人,而最不喜欢给自己买保险的则是陕西人。
“上述结论没有什么道理,这是泰康人寿的数据分析出来的。以前,对于客户的分类局限于"客户属于哪一类",而现在,则扩展到"客户是哪一类"。”泰康人寿首席信息官刘大为在日前召开的“互联网大数据与精算创新论坛”上,用几个有趣的结论介绍了大数据时代保险业正在发生的变革。
精准定位
我的客户在这里
“在当前时代背景下,可以运用大数据分析法来整合分析金融保险需求的关联度,在不同方向、专业形式的共同配合下,做好大数据的升级分析整合的系统工程,从客户的角度,综合统筹各种信息,捕捉各种需求,从而寻找潜在的客户,并预测客户的具体需求。”中国保监会原副主席、中国精算师协会创始人魏迎宁在论坛上表示,从保险业来看,在客户需求的精确锁定方面,大数据给我们带来了很多便利。
在大数据背景下,除了对数据的纵向分析之外,可以从横向来分析消费者的需求。客户的具体收入水平、文化程度、价值观念,也会影响其对保险的态度,通过对网络消费的数额、职业、学历等数据所进行的分析,也可以作为保险需求分析的重要部分。还可以通过搜集互联网用户的地域分布,搜索关键词、购物习惯、流览记录和兴趣爱好等一系列的数据,在保险产品消费中实现需求定向、偏好定向,真正做到精准化、个性化营销。
以“双十一”当天卖出1.86亿单的退运险为例,据统计,此类产品索赔率在50%以上,对保险公司的利润只有5%左右,仅从保险公司的角度,这类产品并不是很成功,但有很多保险公司都有意、愿意去开发这类保险。魏迎宁分析道:“客户购买退运险后,保险公司就可以获得该客户的基本信息,包括手机号和银行账户信息,并能够了解该客户购买的产品,从而实现精准推送。假设该客户购买并退货的是婴儿奶粉,保险公司就可以估计该客户家中有婴儿,可以向其推荐关于儿童疾病、教育等相关的保险产品,这显然比5%的利润更有吸引力。”
风险可测
传统精算遇危机
互联网大数据不仅为险企带来了另一种找客户的方法,也为险企解释风险的技术带来了革命性的变化。
“从保险业来看,传统的精算技术只在一定纬度量化风险,很难充分反映风险的复杂性。而互联网大数据时代,则前所未有的创造了风控每个投保标的的可能,从未有过如此多纬度、低成本的数据,如此系统、新鲜地提供给保险业。”魏迎宁表示,过去成千上百的人都被放在同一风险水平之上,但事实上这是不可能的,大多数人都在支付多一笔的保费。传统精算研究的是评估数,很少涉及个案,保险公司卖车险的时候,考虑的因素有年龄、性别、婚姻状况、驾驶记录、收入、职业、教育、背景等等,但是,通过大数据的分析,可以解决现有的风险控制问题,为客户制订个性化的保单,运用社交网络,改善产品和服务,影响目标客户,通过对已有信息的分析,保险公司可以获得更准确的定价模型,提供个性化的解决方案,不再像现在一样,所有人都面对相同的风险测量准则。
当然,随着革命性的变化而生的,还有巨大的挑战。中国精算师协会副会长、人保财险副总裁王和在论坛上对精算师提出了两个问题:无人驾驶车的出现,将避免车辆之间发生碰撞,那占了财险保费收入70%以上的车险怎么办?基于物联网的健康管理系统的出现,将使生命成为可知,那健康险还保什么?王和认为,计算科学的发展以及信息技术的突破,将导致“计算能力”出现产品化、商品化和日用品化的趋势,特别是人工智能的出现,将颠覆性地挑战所有“依据规则”生存的职业,包括传统精算。
大数据人才
提高行业竞争力
面向未来,传统的计算工匠将难以生存,但真正的人才将成为最先进的技术。
正如刘大为所言,“在互联网大数据时代,最重要的技术,是人才”。从实际情况来看,大数据人才必须有数学专业背景、懂计算机,而在这些硬件条件之外,论坛嘉宾普遍认为,创新能力更为重要。
魏迎宁表示,不拘泥于现有的等待客户的被动模式,预先发现潜在需求者,精准定位需求,运用大数据分析消费者的需求,将为精算职业发展提供更为广阔的空间。搜集获取、分析与保险需求要素有相关关系的所有数据,找到有保险需求的潜在客户群以及他们具体需要的保险产品,最终由销售人员向他们推荐介绍。这种大数据分享,将对提高保险业竞争力,降低销售误导,重塑保险业规范的品牌形象发挥重要作用。
不过,与数学背景、计算机背景、沟通能力、创新能力相比,刘大为坦言:“最为重要的是好奇心。”刘大为对记者说:“做大数据分析,不会有人告诉你做什么、有人给你他的需求,一定是好奇心促使他们在固有的数据中发现了新的商机、新的服务。在这一点上,"80后"、"90后"找到了很多与众不同的结果。但这种人才是非常少的,因此,保险公司应该在现有的基础上加快对大数据人才的积累,这是一个门槛,更是一种挑战。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17