京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据为保险业提供另一种视角_数据分析师
在客户需求的精确锁定方面,大数据给保险业带来了很多便利。以前,对于客户的分类局限于“客户属于哪一类”,而现在,则扩展到“客户是哪一类”。
传统的精算技术只在一定纬度量化风险,很难充分反映风险的复杂性。而在互联网大数据时代,则前所未有的创造了风控每个投保标的的可能,从未有过如此多纬度、低成本的数据,如此系统、新鲜地提供给保险业。
什么星座的人最喜欢买保险?哪个地区的人最喜欢给自己买保险?这些曾经看起来无关乎保费的问题,在互联网大数据时代背景下,也成为了险企定位客户的另一种视角。在泰康人寿的保单中,最喜欢买保险的是天秤座,而最不喜欢买保险的是白羊座;最喜欢给自己买保险的是宁波人,而最不喜欢给自己买保险的则是陕西人。
“上述结论没有什么道理,这是泰康人寿的数据分析出来的。以前,对于客户的分类局限于"客户属于哪一类",而现在,则扩展到"客户是哪一类"。”泰康人寿首席信息官刘大为在日前召开的“互联网大数据与精算创新论坛”上,用几个有趣的结论介绍了大数据时代保险业正在发生的变革。
精准定位
我的客户在这里
“在当前时代背景下,可以运用大数据分析法来整合分析金融保险需求的关联度,在不同方向、专业形式的共同配合下,做好大数据的升级分析整合的系统工程,从客户的角度,综合统筹各种信息,捕捉各种需求,从而寻找潜在的客户,并预测客户的具体需求。”中国保监会原副主席、中国精算师协会创始人魏迎宁在论坛上表示,从保险业来看,在客户需求的精确锁定方面,大数据给我们带来了很多便利。
在大数据背景下,除了对数据的纵向分析之外,可以从横向来分析消费者的需求。客户的具体收入水平、文化程度、价值观念,也会影响其对保险的态度,通过对网络消费的数额、职业、学历等数据所进行的分析,也可以作为保险需求分析的重要部分。还可以通过搜集互联网用户的地域分布,搜索关键词、购物习惯、流览记录和兴趣爱好等一系列的数据,在保险产品消费中实现需求定向、偏好定向,真正做到精准化、个性化营销。
以“双十一”当天卖出1.86亿单的退运险为例,据统计,此类产品索赔率在50%以上,对保险公司的利润只有5%左右,仅从保险公司的角度,这类产品并不是很成功,但有很多保险公司都有意、愿意去开发这类保险。魏迎宁分析道:“客户购买退运险后,保险公司就可以获得该客户的基本信息,包括手机号和银行账户信息,并能够了解该客户购买的产品,从而实现精准推送。假设该客户购买并退货的是婴儿奶粉,保险公司就可以估计该客户家中有婴儿,可以向其推荐关于儿童疾病、教育等相关的保险产品,这显然比5%的利润更有吸引力。”
风险可测
传统精算遇危机
互联网大数据不仅为险企带来了另一种找客户的方法,也为险企解释风险的技术带来了革命性的变化。
“从保险业来看,传统的精算技术只在一定纬度量化风险,很难充分反映风险的复杂性。而互联网大数据时代,则前所未有的创造了风控每个投保标的的可能,从未有过如此多纬度、低成本的数据,如此系统、新鲜地提供给保险业。”魏迎宁表示,过去成千上百的人都被放在同一风险水平之上,但事实上这是不可能的,大多数人都在支付多一笔的保费。传统精算研究的是评估数,很少涉及个案,保险公司卖车险的时候,考虑的因素有年龄、性别、婚姻状况、驾驶记录、收入、职业、教育、背景等等,但是,通过大数据的分析,可以解决现有的风险控制问题,为客户制订个性化的保单,运用社交网络,改善产品和服务,影响目标客户,通过对已有信息的分析,保险公司可以获得更准确的定价模型,提供个性化的解决方案,不再像现在一样,所有人都面对相同的风险测量准则。
当然,随着革命性的变化而生的,还有巨大的挑战。中国精算师协会副会长、人保财险副总裁王和在论坛上对精算师提出了两个问题:无人驾驶车的出现,将避免车辆之间发生碰撞,那占了财险保费收入70%以上的车险怎么办?基于物联网的健康管理系统的出现,将使生命成为可知,那健康险还保什么?王和认为,计算科学的发展以及信息技术的突破,将导致“计算能力”出现产品化、商品化和日用品化的趋势,特别是人工智能的出现,将颠覆性地挑战所有“依据规则”生存的职业,包括传统精算。
大数据人才
提高行业竞争力
面向未来,传统的计算工匠将难以生存,但真正的人才将成为最先进的技术。
正如刘大为所言,“在互联网大数据时代,最重要的技术,是人才”。从实际情况来看,大数据人才必须有数学专业背景、懂计算机,而在这些硬件条件之外,论坛嘉宾普遍认为,创新能力更为重要。
魏迎宁表示,不拘泥于现有的等待客户的被动模式,预先发现潜在需求者,精准定位需求,运用大数据分析消费者的需求,将为精算职业发展提供更为广阔的空间。搜集获取、分析与保险需求要素有相关关系的所有数据,找到有保险需求的潜在客户群以及他们具体需要的保险产品,最终由销售人员向他们推荐介绍。这种大数据分享,将对提高保险业竞争力,降低销售误导,重塑保险业规范的品牌形象发挥重要作用。
不过,与数学背景、计算机背景、沟通能力、创新能力相比,刘大为坦言:“最为重要的是好奇心。”刘大为对记者说:“做大数据分析,不会有人告诉你做什么、有人给你他的需求,一定是好奇心促使他们在固有的数据中发现了新的商机、新的服务。在这一点上,"80后"、"90后"找到了很多与众不同的结果。但这种人才是非常少的,因此,保险公司应该在现有的基础上加快对大数据人才的积累,这是一个门槛,更是一种挑战。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19