
大数据为保险业提供另一种视角_数据分析师
在客户需求的精确锁定方面,大数据给保险业带来了很多便利。以前,对于客户的分类局限于“客户属于哪一类”,而现在,则扩展到“客户是哪一类”。
传统的精算技术只在一定纬度量化风险,很难充分反映风险的复杂性。而在互联网大数据时代,则前所未有的创造了风控每个投保标的的可能,从未有过如此多纬度、低成本的数据,如此系统、新鲜地提供给保险业。
什么星座的人最喜欢买保险?哪个地区的人最喜欢给自己买保险?这些曾经看起来无关乎保费的问题,在互联网大数据时代背景下,也成为了险企定位客户的另一种视角。在泰康人寿的保单中,最喜欢买保险的是天秤座,而最不喜欢买保险的是白羊座;最喜欢给自己买保险的是宁波人,而最不喜欢给自己买保险的则是陕西人。
“上述结论没有什么道理,这是泰康人寿的数据分析出来的。以前,对于客户的分类局限于"客户属于哪一类",而现在,则扩展到"客户是哪一类"。”泰康人寿首席信息官刘大为在日前召开的“互联网大数据与精算创新论坛”上,用几个有趣的结论介绍了大数据时代保险业正在发生的变革。
精准定位
我的客户在这里
“在当前时代背景下,可以运用大数据分析法来整合分析金融保险需求的关联度,在不同方向、专业形式的共同配合下,做好大数据的升级分析整合的系统工程,从客户的角度,综合统筹各种信息,捕捉各种需求,从而寻找潜在的客户,并预测客户的具体需求。”中国保监会原副主席、中国精算师协会创始人魏迎宁在论坛上表示,从保险业来看,在客户需求的精确锁定方面,大数据给我们带来了很多便利。
在大数据背景下,除了对数据的纵向分析之外,可以从横向来分析消费者的需求。客户的具体收入水平、文化程度、价值观念,也会影响其对保险的态度,通过对网络消费的数额、职业、学历等数据所进行的分析,也可以作为保险需求分析的重要部分。还可以通过搜集互联网用户的地域分布,搜索关键词、购物习惯、流览记录和兴趣爱好等一系列的数据,在保险产品消费中实现需求定向、偏好定向,真正做到精准化、个性化营销。
以“双十一”当天卖出1.86亿单的退运险为例,据统计,此类产品索赔率在50%以上,对保险公司的利润只有5%左右,仅从保险公司的角度,这类产品并不是很成功,但有很多保险公司都有意、愿意去开发这类保险。魏迎宁分析道:“客户购买退运险后,保险公司就可以获得该客户的基本信息,包括手机号和银行账户信息,并能够了解该客户购买的产品,从而实现精准推送。假设该客户购买并退货的是婴儿奶粉,保险公司就可以估计该客户家中有婴儿,可以向其推荐关于儿童疾病、教育等相关的保险产品,这显然比5%的利润更有吸引力。”
风险可测
传统精算遇危机
互联网大数据不仅为险企带来了另一种找客户的方法,也为险企解释风险的技术带来了革命性的变化。
“从保险业来看,传统的精算技术只在一定纬度量化风险,很难充分反映风险的复杂性。而互联网大数据时代,则前所未有的创造了风控每个投保标的的可能,从未有过如此多纬度、低成本的数据,如此系统、新鲜地提供给保险业。”魏迎宁表示,过去成千上百的人都被放在同一风险水平之上,但事实上这是不可能的,大多数人都在支付多一笔的保费。传统精算研究的是评估数,很少涉及个案,保险公司卖车险的时候,考虑的因素有年龄、性别、婚姻状况、驾驶记录、收入、职业、教育、背景等等,但是,通过大数据的分析,可以解决现有的风险控制问题,为客户制订个性化的保单,运用社交网络,改善产品和服务,影响目标客户,通过对已有信息的分析,保险公司可以获得更准确的定价模型,提供个性化的解决方案,不再像现在一样,所有人都面对相同的风险测量准则。
当然,随着革命性的变化而生的,还有巨大的挑战。中国精算师协会副会长、人保财险副总裁王和在论坛上对精算师提出了两个问题:无人驾驶车的出现,将避免车辆之间发生碰撞,那占了财险保费收入70%以上的车险怎么办?基于物联网的健康管理系统的出现,将使生命成为可知,那健康险还保什么?王和认为,计算科学的发展以及信息技术的突破,将导致“计算能力”出现产品化、商品化和日用品化的趋势,特别是人工智能的出现,将颠覆性地挑战所有“依据规则”生存的职业,包括传统精算。
大数据人才
提高行业竞争力
面向未来,传统的计算工匠将难以生存,但真正的人才将成为最先进的技术。
正如刘大为所言,“在互联网大数据时代,最重要的技术,是人才”。从实际情况来看,大数据人才必须有数学专业背景、懂计算机,而在这些硬件条件之外,论坛嘉宾普遍认为,创新能力更为重要。
魏迎宁表示,不拘泥于现有的等待客户的被动模式,预先发现潜在需求者,精准定位需求,运用大数据分析消费者的需求,将为精算职业发展提供更为广阔的空间。搜集获取、分析与保险需求要素有相关关系的所有数据,找到有保险需求的潜在客户群以及他们具体需要的保险产品,最终由销售人员向他们推荐介绍。这种大数据分享,将对提高保险业竞争力,降低销售误导,重塑保险业规范的品牌形象发挥重要作用。
不过,与数学背景、计算机背景、沟通能力、创新能力相比,刘大为坦言:“最为重要的是好奇心。”刘大为对记者说:“做大数据分析,不会有人告诉你做什么、有人给你他的需求,一定是好奇心促使他们在固有的数据中发现了新的商机、新的服务。在这一点上,"80后"、"90后"找到了很多与众不同的结果。但这种人才是非常少的,因此,保险公司应该在现有的基础上加快对大数据人才的积累,这是一个门槛,更是一种挑战。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18