京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据爆炸时代的企业云:变革暗藏的数据野心
随着移动互联网的迅速发展,智能终端、可穿戴设备、智能家居、物联网以及基因测序正在快速普及。企业和用户每天接触的数据吞吐量呈现出指数级的增长趋势,我国社会正在步入大数据爆炸的时代。
大数据时代降临的今天,个人云存储服务早已迈向免费时代,而中国各行各业的互联网化与现实世界数据化的趋势,计算和应用都更加需要集中化,使得市场对企业级别云存储的需求更加迫切。面对这样的市场趋势,企业级云存储市场的“圈地运动”呼之欲出,“免费”二字成为了各家的新玩法。
企业级数据的大爆发
IBM 商业研究院与牛津大学的合作调研研究报告称,整个人类文明所获得的全部数据中,有 90%是过去两年内产生的。而到了 2020 年,全世界所产生的数据规模将达到 2013 年的44 倍。按照《“互联网+”基础设施数据中心发展报告》数据显示,未来8 年国内在线数据量的复合增长率将会达到84%;而线性增长的数据中心供给年复合增长率只有30%-40%,这使得数据中心需求和价值不断增加。
如今越来越多的智能设备相继投入市场,互联网巨头也开始加大投入,智能硬件离不开数据收集和存储,云也成为连接智能硬件和人的关键。智能手机日益普及,用户庞大需求背后的平台企业所需的数据支撑同样在飞速增长。
以物联网行业和医疗行业为例,其中的企业级数据可谓天文数字。物联网的启动,使得未来更多来自社会环境、公共领域上的数据量增加。如不断部署的高清监控摄像头,一个 1080P 的摄像头的码流率为 8Mb/s,一天将会产生约 86.4GB 的视频数据量。随着医疗行业基因测序的开展,对数据存储的要求也会大幅增长。以人类为例,人类基因组拥有 30 亿个碱基,数据量即为 3Gb;假设全球 70 亿人口数量,如果每人都测一次,则测序的数据量至少为 3Gb*70 亿。
数据爆发背后的变革
2009 年开始政府部门逐步出台了一系列政策鼓励云计算产业的发展,地方政府也配合着进行了一些项目投资,但由于当时国内云计算产业与技术都还不够成熟,且用户对云计算的安全性等问题存在顾虑,直到 2012 年底前云计算都并未被广泛地采用。2013 年开始,我国云计算技术已步入成熟,企业对云计算已有一定认识,且通过云计算削减成本的意愿较强烈,阿里、百度、盛大等国内互联网公司纷纷推出自己的云计算业务,同时 Microsoft, Google, Salesforce 等海外云计算公司开始纷纷将其云计算业务引入中国。 2013 年 12 月 18 日 Amazon 正式宣布将其云计算业务 AWS 引入中国,标志着国内外各云计算巨头在国内布局基本完毕。相关公司此后将陆续开始在国内推广自己的云计算服务,国内市场竞争大幕开启。
企业云存储属于互联网时代的一个产物,把人们从U盘和移动硬盘时代解放出来,文件存储可以随时进行。云存储给企业提供了共享、协作的环境,受到许多大中小企业的青睐,通过简单的搭建就能帮助企业实现办公上云。在云存储帮助企业解决这些办公便利性上,市场发展也不断推进,许多企业纷纷抛弃以往的个人云存储,开始使用企业云存储。
但在数据大爆发的今天,一般企业的数据增长以及实现数据分析所需要的存储空间几乎没有上限,这背后的成本让不少企业面对拥抱“互联网+”这股潮流显得心有余而力不足。庞大的数据存储及数据计算需求与高昂的云存储费用之间形成了一股不可逆转的矛盾。也推动企业级云服务提供商开启了一场以免费为口号的圈地运动,云厂商将盈利点转向软件及服务的趋势已经初见端倪。
从国外市场来看,去年7月 Google 就曾全面调整其云存储计费,几乎达到免费的程度。而在国内市场,今年5月,阿里云和腾讯云的大幅降价实际上也吹响了变革的号角。2015年,国内云服务商UPYUN三次下调旗下云服务产品的价格,总体下调幅度将近50%,而在9月1日,UPYUN直接对企业用户免费开放存储服务,向行业扔进了一颗重磅炸弹。
变革暗藏的数据野心
免费在移动互联网的今天,一直都是一项重磅炸弹。正是因为互联网的免费红利,才彻底打开了搜索引擎的大门,降低了互联网行业的准入门槛,更多用户得以参与其中,企业级云存储市场同样如此。
免费可以在一时间积累大量中大小企业用户,让企业办公高度云端化。在大量的使用过程之中,不断催生了基于云存储平台的个性化需求,带给云存储企业的就是客户的二次开发。客户也从单纯的免费进入更实际实用阶段,云服务提供商可以由此获利。
服务免费更要服务靠谱。对于创业者、创业公司来说,企业云存储免费后,他们使用企业云存储的门槛就降到了最低,云存储对企业的好处是毋庸置疑的,如节约硬件成本,大幅降低用户加载图片、视频的时长,数据也能够得到更为有效的管理,而最重要的是,在未来的大数据时代,云存储上的数据能够为他们创造更好的未来——因为企业未来的核心竞争力,依靠的就是数据能力,企业云存储服务,是构建这项能力的最基本的条件。
可以预见的是,未来将有一大批中小企业随之拥抱互联网,拥抱云计算。而在免费趋势的带动之下,越来越多的企业将得到全方位的提升。企业级云服务带来的不仅是互联网思维的发展,更能在企业内部做到公开、透明、数据化展现,实现信息的共享、协作和平等,管理变得更加的扁平化。让互联网的思维产业延伸到企业的生产、管理和销售等方方面面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22