
大数据时代下的供应链金融
大数据是当下最热的词汇。在互联网条件下,信息量爆炸式增长,如果我们不能获取、整理和应用这些信息和数据,就有可能在很短的时间内落后,甚至被抛弃。在供应链金融服务领域,更是如此。
供应链金融服务的现状
供应链金融是运用供应链管理的理念和方法,为相互关联的企业提供金融服务的活动。主要业务模式是以核心企业的上下游企业为服务对象,以真实的交易为前提,在采购、生产、销售各环节提供金融服务。由于每家企业都有自己供应链条,展现出一个庞大的供应链网络。不同的金融企业把自己的服务产品化,赋予不同的产品名称。在过去的十多年里,供应链金融业务出现了许多创新。
1.金融与物流两业融合
第一是金融与物流两业融合。包括订单融资、保单融资、电商融资、金融物流、担保品管理、保兑仓、保理仓、贸易融资、应收账款质押融资、预付账款质押融资、进出口项下质押融资、存货质押融资、融资租赁、金融物流、供应链金融、仓单质押、动产质押、互联网金融。还有代收代付、结算、保险等。物流企业的作用在于保证货物存在和交付。
2.金融与物流进入电子商务
几乎所有电子商务公司在提供交易平台的同时提供融资平台,为买、卖双方开展质押贷款。各主要商业银行、股份制银行都推出了针对电子商务的融资产品。电子商务将颠覆传统的交易方式。一是交易不受时空限制;二是缩短交易环节;三是碎片化订单真实反映需求;四是快速交易要求快速交付;五是为小企业提供了销售市场;六是成本和售价降低。电商新模式是网上交易、网上融资、网下交割。物流业的业务方式也会改变。快速响应、快速分拣、小批量、多批次、可视化、网络化等需求,会影响物流设施的规模、布局、构造等。
大数据对供应链金融的影响
1.可用于判断需求方向和需求量
供应链上的企业,存在着紧密的关联关系。终端消费量的变动,必然会引起上游各环节的变动。大数据时代大数据可帮助我们判断一系列变动的规律。同时,我们还可以把一定时期内的流通和消费看作是一个常量,而在地区、方向、渠道、市场的分配作为变量。
2.可用于目标客户资信评估
利用大数据,可以对客户财务数据、生产数据、电水消耗、工资水平、订单数量、现金流量、资产负债、投资偏好、成败比例、技术水平、研发投入、产品周期、安全库存、销售分配等进行全方位分析,信息透明化,能客观反映企业状况,从而提高资信评估和放贷速度。只看财报和交易数据是有风险的,因为可能造假。
3.可用于风险分析、警示和控制
大数据的优势是行情分析和价格波动分析,尽早提出预警。行业风险是最大的风险,行业衰落,行内大多企业都不景气。多控制一个环节、早预见一天,都能有效减少风险。。
4.可用于精准金融和物流服务
贷款时间、期间、规模、用途、流向;仓储、运输、代采、集采、货代、保兑、中介、担保一体化运营。
大数据应用的条件
1.基础数据的真实性
要使用大数据,就必需保证数据的真实性,尤其是基础数据的真实性。当前,GDP、吞吐量、货运量、仓储设施、投资额、主营收入等数据都有水分。地方GDP加总超过国家GDP,集装箱重复装卸计算吞吐量,关联企业互开发票增加销售额等,致使数据失真。因此,改革考核体制、改革统计体制已是当务之急。
2.数据要能聚焦成指标
数据本身是枯燥的、杂乱的,但形成指标后便具有生命。科学地设定指标,确定指标间的勾稽关系,才能准确地判断事物发展的规律和路径。先行指标有重要指导作用。数据的负面影响是信息污染,影响判断。
3.不同数据体系要互联互通
在市场化条件下,数据是资源和产品。利益分割使信息孤岛现象更为严重,甚至于公共信息都被当作部门利益而垄断起来。部门数据、行业数据、企业数据、国际数据相互割裂,大数据不能发挥应有的作用。
4.积累准确的参数
在实际工作中,基础参数极为重要,尤其是是临界参数。参数是基准,木直中绳,参数就是木工打出的那根基线。在我国,货币发行量、货币流通量、每百平方公里道路里程、仓储业投资规模、物流园区投资规模、港口数量和吞吐规模、物流强度、投资强度、投入产出比、均缺少基准,才出现了货币超发行,通货膨胀,港口过剩,产能过剩等问题。
5.先进的数据应用理念
如果数据是客观的,使用数据的人还要有先进的应用理念。这与经验、学识、能力有关。决策,尤其是与企业命运有关的决策,不能参杂私念和人情因素。如果我们认真追究产能过剩形成的原因、追究投资失误的原因,都与理念有关。
大数据下供应链金融发展的趋势
1.向信用担保方向发展
电商企业根据自己掌握的数据,对客户的业务、信用进行分析,在安全范围内提供小量、短期融资,把沉淀在网上的无成本资金盘活。电商规模越大,沉淀资金越多。如果加上吸收存款功能,就变为金融机构;在大数据的引导下,银行业也会释放出这种灵活性,这样,信用担保就不仅仅限于大企业,而是可用于中小企业,业务范围将大大扩展。
2.向实物担保方向发展
任何时候,实物担保都不可或缺。它是电商融资和银行融资的安全底线,要保证实物的真实性和安全性,需要物流企业与之配合。
3.向供应链金融平台方向发展
平台是大数据的汇集者,交易平台与物流平台集成、与支付系统集成、与交易融资系统集成,达到信息流、资金流、物流、商流的无缝隙连接;确保交易资源真实可靠、贸易行为真实可靠、担保物变现渠道畅通、担保物价格波动监控实时等。
综上所述,大数据正在影响和改变我们的时代,供应链金融将是其最大的受益者,它把交易变得更安全、快速、可靠,把供应链连成网络,把经济引入“计划”,金融“润滑”更加有效。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18