京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习和数据分析在高性能计算和企业管理云平台发挥举足轻重的作用
计算能力的提升有望给高性能的计算空间和企业最终数据中心基础架构的建立带来重大的变化。全球多个国家正在建立一个系统。这个系统一旦建成,预计是目前20 千兆次能力的50倍。
并在能源效率和占用的物理空间等领域带来相应的改进。工程师和科学家使用越来越多复杂的应用程序到这个系统中来,但是这个系统如此昂贵以至于我们不能仅仅在特定的条件下才可以使用到它。
与此同时,更高级别的数据分析和机器学习的出现正在迫使美国在进入百万兆级运算方面做出一些改变。
这些改变从软件的系统开发到一些有竞争力的中国公司都发挥着重要的作用,并且这些中国公司正在积极的推进百万兆级运算。
上星期在德克萨斯州奥斯汀市谈人工智能时代。从国家实验室到云计算项目首席技术执行官,概述了 企业管理云平台未来几年内在云计算系统的相关工作。
在他的谈话也提及到过去 18 个月中一些主流科学家脑中出现的关于数据分析和机器学习方法的思考,和企业实现云计算的实现做出的准备。
盖斯特说,"在未来,会有越来越多的驱动力量,一台机器可以解决更为广度的问题。这就要求机器学习要在计算机内部进行分析而不是依靠人为判断再去进行分析。
大量数据的生成持续不断的扩大数据规模,驱使移动设备的普及到云计算的迅速生成。高性能计算的组织和企业正在寻求一个方法去收集,储存和实时的去分析这些数据。以便企业可以立即的去研究这些数据后再做决策。
机器学习和人工智能 (AI) 是越来越多地被用于帮助加速收集和分析数据。此外,人工智能,机器学习是是很多新兴领域的核心技术,从新的网络安全技术到无人驾驶技术。
盖斯特说;在企业管理云平台中数据分析和机器学习发挥着越来越重要的作用。在为百亿亿次计算开发的应用程序中,数据分析和机器学习的重要性得到了充分的印证。
例如, 应用程序的开发试图涉及到一系列领域, 从气候和化学到基因组学, 地震和宇宙论。还有一个项目正在进行, 以及癌症研究和预防的应用程序的开发, 越来越多的工作使用到了数据科学和机器学习。
此外,企业管理云平台成立于2016年,最初开发的四个应用涉及面是相对较窄的。例如;如何高效的去计算百亿亿次离子和粒子的精准度的应用的开发、在线数据分析的问题和数据科工作在科技行业的不断提高等方面的应用开发。
在过去的几个月中,该程序添加了五个协同设计中心,为了启动百亿亿次应用程序采用了目标曲线和组合函数的方法。
他说新中心的建立是为了处理更加具体的数据分析和机器学习所带来的的挑战。更普遍的意义是, 这两种新兴技术也对企业管理云平台正在寻求的系统类型产生影响, 比如IBM、英特尔和英伟达的供应商,以及在百亿亿次竞赛中与中国日益激烈的竞争。
企业管理云平台正在寻找的系统不仅能够百亿亿次级的计算, 而且可以被广泛的组织使用,。这个想法产生于在高性能计算的开发和使用的环境下将会层叠到企业和大宗商品机器中,盖斯特说。
他们应该可以用于广泛的用户, 而不仅仅是少数 "英雄程序员"。鉴于此, 企业管理云平台正在寻找供应商开发能够满足程序中规定的各种要求的系统,。
如启用极端并行性, 创建新的内存和存储技术, 可以处理缩放、可靠性高和能耗在20到30兆瓦之间等一系列规定。
然而,这样做的目的并不是一味的去创建激进的设计或是创建先进的结构体系。盖斯特说;如果供应商可以创建百亿亿次的系统, 而不一味追求激进的解决方案,那便是最好的。
"事实上, 我们可能更喜欢这一点。同时,企业管理云平台的官员也明白, 到2021按照计划开发第一台百亿亿次的计算机, 将必须采取一些新颖的设计和架构方法。但是他们希望在接下来的2023这样的系统之后, 不需要采取这种激进的做法。
盖斯特补充说,"我们不是在试图制造一个特技的机器,"这些系统的目标不仅仅是他们能生产多少次浮点运算, 而是他们背后能生产多少科学。"我们想建立一些对国家和科学有用的东西。
这所以这样去要求,是因为目前正在处于一个关键的阶段。美国和中国如何接近百亿亿次计算。
中国已经有三个百亿亿次项目正在进行中, 一个叫做 Tianhe-3 的原型,计划准备就绪。关于中国的努力的大部分讨论都是关于中国政府投资项目的资金数额。同时, 中国也不像美国一样受到传统技术的限制,盖斯特说到。
盖斯特说;中国可以建立一次性的芯片,并且低耗能、高性能还不用担心应用程序的遗留问题-不在智能手机或是服务器市场上运营。
对于美国供应商来说, 他们必须构建能够运行广泛的新的和传统的应用程序系统, 以及可以在其他系统中使用的组件。他们必须能够处理无数的工作量, 这就是为什么企业管理云平台在数据分析和机器学习领域不断创新的原因了。
他说, 这些越来越重要的技术将在高性能计算和企业计算以及消费者设备计算中得到广泛应用。供应商知道, 在考虑百亿亿次计算的革新时, 他们必须考虑到这一点。
新兴技术的应用将在广泛的技术领域,至关重要,所以在体系结构中的创新需要能够满足世界超级计算和企业世界。例如,在高性能计算(HPC)空间中,组织转向机器学习加快他们正在为这种任务作为质量保证的模拟工作负载,盖斯特说。
"在美国, 这生态系统的健全是非常重要的," 盖斯特说。"如果你一年只卖两台机器,那么这个生意你就不要做了,结果是你一定会破产的。因此, 这些芯片和这些技术需要扩展到新的市场。
这就是美国必须与之抗争的, 以确保我们能够满足高性能的要求。这就是为什么我们将这种扩展转化为数据分析和机器学习, 这似乎在高性能计算的世界有一个更大的市场。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22