京公网安备 11010802034615号
经营许可证编号:京B2-20210330
医疗大数据,遥不可及的贝贝
在“云计算”、“大数据”概念此起彼伏的年代,人人都窥私着“医疗大数据”- 这块最后的盛宴。
卫生行政部门希望获得医院的运行状况数据,以便对医院进行有效的监管和考评;医疗IT开发商希望摆脱恶性竞争,从卖“IT人力”进入到“卖服务”;互联网服务提供商们曾经想找医院们合作,结果一个个都吃了闭门羹,只能忍气吞声给C端(消费者)提供非常初级的咨询、评价服务。至于消费者,似乎从来不知道“自己的医疗数据”在哪里。
09年底,曾有一篇《信息生态学与国家医疗卫生信息共享》的文章,里面第一次引入“生态”的视角。如同有人要建立电子商务的生态,有人要建立移动APP开发的生态一样,只要存在一个由大量的互相联系的不同角色组成的系统,一般都可以应用“生态学”理论。该文章通过对中国医疗信息生态环境的分析,发现这里的“关键物种”就是医院。核心是医院共享数据的“驱动力”及“意愿”不足的问题!
笔者分析有以下原因:
1、医疗服务分布严重畸形
在社区医生临床服务水平不高的今天,看病就去大医院的理念不可能短期改变。一些大城市的三甲医院的年门诊量可以达到几百万的数量级。医院从上到下,忙于应付医疗纠纷、提高病床周转率,把病人当做“客户”的意识缺乏。所以大多数医院都没有“CRM”(客户关系管理)的理念,既然连自己的出院病人都无法建立日常联系,谈何跨医院数据共享?
2、多重管理体系
不同医院,有不同的“婆家”,垂直管理体系林立。大的就有军队系列、当地政府系列、大学附属系列、部属系列等。卫生行政部门对医院的管理力度,大大弱于银行等其他行业。
3、技术壁障和责任风险
目前各医院都有信息中心,但配备的人员力量以及年度信息化经费预算还是有限。导致两个结果:信息中心只求平安,不求发展,很多被HIT厂商变相控制;部分医院内部的数据都还处于无法互联共享阶段。另一个重要原因是,目前大多数医院都是本地局域网模式运行,内外网的瓶颈问题不解决,医患之间、院院之间的数据流动就无从谈起。
4、环境问题
政策滞后,例如:检验结果互认、双向转诊等的机制规范确认;HIT标准制定、认证及执行的方法学落后等。
话虽如此,笔者相信医院的数据隔离墙终有被推倒一时。来自以下几个变数:
1、HIT厂商的洗牌
几年前的一个数据,中国还没有一个HIT厂商的市场占有率超过 5%。随着产业竞争、收购兼并上市,终会最后剩下几个大玩家。有些已经从低价竞争,进入到为医院提供IT外包服务的模式;有些在某个区域具有垄断地位的厂商,会率先和当地政府联合打破医院的壁垒,提供面向个人服务的尝试。
2、医院管理者的洗牌
随着年轻一代医院CIO或院长的上任,对IT重视程度必然会提升。尤其是一些新医院,一开始的网络设计就支持院外访问。
3、数据挖掘的推动
目前,大多数医院,无法做到数据的永久保存(一般就几年)。这些经年累月的病患数据具有极其珍贵的研究价值。医院数据的第三方云存储是必然趋势,从而为数据的再次利用和流动创造条件。
4、民营医院的崛起
真正高端、高质量的民营医院浪潮正在涌动。他们对患者的服务意识从起始阶段就十分重视,天然就不存在“医院数据围墙”这一说,而且会成为数据共享的积极参与者。
5、医生的流动
多点执业虽然试用两年效果一般般,但随着年轻医生的成长,医生流动的加剧是必然的。近期协和医生到深圳办诊所,部分医生通过网络积累口碑,从公立进入私立的比比皆是。此时,很多病人会跟着医生走,进一步促使患者EMR信息的共享需求。
6、商业医疗保险
目前各大商业保险公司,都在努力研究新的健康与医疗保险,结合高端健康管理服务,商业保险也许是撬动医院的重要支点。
7、个人的力量
全球“量化自身”运动的热潮,让“个人健康云”在医院外逐步开花。大众对于其去医院看完病之后,获得自己的电子医疗数据的呼声,亦会逐渐增高。我们看到,部分医院已经开始实践给患者提供移动APP,方便患者从手机取化验报告等服务的尝试。另外,随着一些患者社区或患者组织的壮大,个人群体对于医院的说话权会进一步增大。
8、开放开源与NGO
在产业格局复杂,政府推动缓慢,个人无所适从的当前阶段,一些NGO组织推动的医疗健康产业开放联盟值得关注。结合医疗信息开源的趋势,这是一股自底向上,与政府自上而下遥相呼应的力量!
医疗大数据,就是这么一个看起来很美,但又似乎遥不可及的贝贝。而其中的“关键物种”- 医院,在各方势力的努力下,终有开启数据之门之时。届时,各类医疗APP 才能真正落地,为老百姓提供丰富多彩的在线服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26