京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用,而是存在复杂的传导机制。中介效应分析正是探究这种 “自变量→中介变量→因变量” 链式关系的核心方法,而 SPSS 作为常用的统计分析工具,为中介效应的检验提供了便捷且可靠的实现路径。本文将结合 SPSS 分析结果,系统解读中介效应的检验逻辑、关键指标及实际意义。
中介效应的本质是揭示 “自变量(X)如何通过中介变量(M)影响因变量(Y)” 的过程。当 X 对 Y 的影响一部分通过 M 传导,一部分直接作用于 Y 时,称为部分中介;若 X 对 Y 的影响完全通过 M 实现,则称为完全中介。SPSS 中常用的检验方法为逐步回归法,其核心步骤包括:
检验 X 对 Y 的总效应(模型 1:Y = cX + e₁);
检验 X 对 M 的效应(模型 2:M = aX + e₂);
检验 X 和 M 对 Y 的共同效应(模型 3:Y = c'X + bM + e₃)。
若上述三步中系数 c、a、b 均显著,且加入 M 后 c' 的显著性下降(或绝对值减小),则可初步判断存在中介效应,再通过 Sobel 检验进一步验证间接效应(a×b)的显著性。
以某 “教育投入(X)对学生成绩(Y)的影响,且学习动机(M)为中介变量” 的研究为例,SPSS 输出结果的解读需聚焦以下核心指标:
回归方程为:Y = 0.52X + 0.31(R²=0.38,F=28.67,p<0.001)。
系数 c=0.52(p<0.001)表明,教育投入对学生成绩存在显著正向总效应,即教育投入每增加 1 个单位,学生成绩平均提高 0.52 个单位。
R²=0.38 说明该模型可解释学生成绩 38% 的变异,具备一定解释力。
回归方程为:M = 0.63X + 0.25(R²=0.41,F=32.15,p<0.001)。
回归方程为:Y = 0.21X + 0.49M + 0.22(R²=0.57,F=45.32,p<0.001)。
系数 b=0.49(p<0.001)显著,表明学习动机对学生成绩存在正向影响;
系数 c'=0.21(p<0.05)仍显著,但较模型 1 中的 c=0.52 明显减小,说明教育投入对学生成绩的直接效应减弱,部分效应通过学习动机传导;
R² 从 0.38 提升至 0.57,表明加入中介变量后模型解释力显著增强,进一步支持中介效应的合理性。
Sobel 检验 Z 值 = 3.26(p=0.001),小于 0.05 的显著性水平,表明间接效应(a×b=0.63×0.49=0.3087)显著。结合模型 3 中 c' 仍显著的结果,可判定存在部分中介效应,即教育投入对学生成绩的总效应中,约 59.37%(0.3087/0.52)通过学习动机实现。
从上述分析可知,教育投入对学生成绩的影响并非单一路径:一方面,教育投入可直接提升成绩(如优质教学资源的直接作用);另一方面,更重要的是通过增强学习动机间接促进成绩提升。这一结论为教育实践提供了明确指导 —— 在增加教育投入时,需同步关注学生动机的激发(如设置个性化学习目标、优化激励机制),才能最大化投入的实际效果。
需注意的是,SPSS 逐步回归法虽操作简便,但受样本量和数据分布影响较大,若条件允许,可结合 Bootstrap 法(通过重复抽样验证间接效应)进一步提升结果的稳健性。此外,中介效应分析仅能揭示变量间的关联,无法直接证明因果关系,需结合研究设计(如实验法)和理论基础综合判断。
总之,通过 SPSS 进行中介效应分析,能够突破简单的相关性描述,深入挖掘变量间的隐性传导机制,为理论深化与实践优化提供扎实的量化依据。在解读结果时,需紧扣 “总效应 — 前置效应 — 直接 / 间接效应” 的逻辑链条,结合专业语境阐释其实际价值,方能充分发挥数据分析的决策支持作用。

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04