
挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖掘用户价值的方法?deepseek的思考还是非常合逻辑的,其中,用户分群、合个性化推荐几乎所有企业都在用,而这一块也是数据分析师体现个人价值的地方。
在数字化时代,企业要想在激烈的市场竞争中脱颖而出,离不开对用户的深度理解和精准运营。挖掘用户价值的第一步是对用户对象打标签,进行用户分层,而在这个过程中,用户标签体系和指标体系就像两把利器,帮助企业更好地认识用户、优化业务。
简单来说,用户标签体系就是给用户“贴标签”,把用户的属性、行为、兴趣等信息进行分类和标记。比如:
这些标签就像用户的“身份证”,帮助我们快速了解用户是谁、喜欢什么、做了什么。
建立了用户标签体系,就可以把用户分成不同的群体,比如“高价值用户”“潜在用户”“流失用户”;根据标签推送个性化内容,比如给喜欢运动的人推荐运动装备;通过标签组合,形成完整的用户画像,帮助企业更好地理解用户需求。
某电商平台通过标签体系发现,25-35岁的女性用户对美妆产品有较高兴趣。于是,他们针对这一群体推送了某品牌口红的促销广告。活动结束后,通过指标体系发现,这次活动的转化率达到了15%,远高于其他群体的平均转化率(8%)。基于这一数据,平台决定加大对这一用户群体的营销投入。
指标体系是通过一系列量化指标来衡量业务表现和用户行为。用数据说话,让业务“有据可依”,依的就是指标体系。常见的指标体系如:
这些指标就像业务的“体检报告”,帮助企业了解业务是否健康、用户是否满意。
某外卖平台发现新用户的留存率较低。于是,他们针对新用户推出了“首单立减10元”的活动。通过指标体系发现,这一策略使新用户的7日留存率从20%提升到了35%。同时,针对流失用户,平台推送了“回归礼包”,成功召回了15%的流失用户。这就是指标体系的作用。
某社交平台通过标签体系发现,很多用户经常在app上搜索“夜间模式”,发现用户对于“夜间模式”有强烈需求。于是,平台在最新版本中增加了这一功能。通过指标体系发现,夜间模式的使用频率高达60%,且用户满意度提升了20%。基于这一数据,平台决定进一步优化夜间模式的视觉效果。另外,也可以根据这个“夜间模式”使用情况,设定营销计划。
用户标签体系和指标体系是CDA数据分析师一级考试的重点内容。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18