京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师的薪资水平在不同行业和公司中存在显著差异。根据搜索结果,以下是一些薪资水平通常较高的行业和公司类型:
金融行业:金融行业对数据分析师的需求很大,因为他们需要通过分析大量的交易数据、市场趋势和风险评估来优化投资策略和提高决策质量。金融行业的数据分析师薪资通常较高。
科技行业:科技公司通常拥有大量用户数据,需要数据分析师来分析用户行为、优化产品和提升用户体验。科技行业的数据分析师薪资也相对较高,尤其是在硅谷等高科技产业集中的地区。
互联网/电子商务:互联网和电子商务公司依赖数据分析来优化用户体验、提高转化率和增加销售额。这些公司通常提供较高的薪资水平,尤其是在北京、上海、深圳等大城市。
计算机软件:软件开发公司需要数据分析师来改进产品功能、用户体验和市场定位。这些公司通常愿意为数据分析师支付较高的薪资。
新能源:随着新能源行业的发展,对数据分析的需求也在增长,尤其是在优化能源效率和降低成本方面。
专业服务(咨询、人力资源、财会):咨询公司和专业服务公司通常需要数据分析师来提供基于数据的洞察和建议,这些服务通常收费较高,因此数据分析师的薪资也相对较高。
大型科技公司和知名互联网公司:例如腾讯、阿里巴巴、百度、字节跳动等,这些公司通常提供非常有竞争力的薪资和福利。
根据BOSS直聘的数据,数据分析师的平均月薪在中国为7,581元人民币,但这个数字可能会随着不同城市和行业而有所变化。例如,在北京,数据分析师的工资可以达到26.4K,而在上海和深圳,数据分析师的薪资也相对较高。在互联网/电子商务行业中,数据分析师的平均工资为23.9K,而在计算机软件行业中,平均工资也接近这一水平。
总的来说,数据分析师在金融、科技、互联网/电子商务、计算机软件和专业服务等行业中的薪资水平通常较高。这些行业的公司往往更依赖数据分析来驱动业务决策,因此愿意为数据分析师支付更高的薪资。同时,大城市和知名公司也是数据分析师获得高薪资的重要场所。
数据分析师在不同城市的平均薪资水平有何差异?
数据分析师在不同城市的薪资水平存在显著差异,主要受地区经济状况、行业需求、生活成本和专业技能等因素的影响。以下是一些主要城市的数据分析师薪资水平概况:
北京:作为中国的政治、文化和教育中心,北京对数据分析师的需求量大,薪资水平较高。数据分析师的平均月薪在北京可以达到25,400元左右,其中20,000元到30,000元薪资范围的占比最高 。
上海:上海是中国的经济中心之一,数据分析师的平均月薪在上海大约为20,000元到30,000元之间,其中36.6%的岗位提供这一薪资水平 。
深圳:深圳是中国的高科技和制造业中心,数据分析师在深圳的平均月薪中位数大约在15,000元左右,位居全国首位 。
广州:广州作为南中国的重要经济中心,数据分析师的平均月薪在广州大约为20,000元到30,000元之间,其中28.3%的岗位提供这一薪资水平 。
杭州:杭州是中国的互联网和电子商务中心之一,数据分析师在杭州的平均月薪中位数大约在12,000元左右,其中38.1%的岗位提供这一薪资水平 。
成都、武汉、南京、厦门:这些新一线城市的数据分析师起薪大约在7,000元左右,与一线城市相比,薪资水平较低,但生活成本也相对较低 。
青岛:青岛的数据分析师起薪约为7,000元左右,随着工作年限增长,薪资会逐步上升。1-3年经验的数据分析师薪酬平均8,000元,3-5年在12,000元左右 。
全国平均水平:数据分析师在全国的平均月薪为7,581元,其中大多数人的收入集中在5,000元到20,000元每月 。
需要注意的是,这些数据仅供参考,实际薪资水平可能会因公司规模、行业特性、个人能力等因素而有所不同。此外,随着数据分析技能的进一步发展和市场需求的增加,数据分析师的薪资水平普遍呈现上升趋势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21