
数据分析师考证是指CDA数据分析师认证考试,即Certified Data Analyst Certificate,是一套科学化、专业化、国际化的人才考核标准,共分为CDA LEVEL I,LEVEL II,LEVEL III三个等级,涉及行业包括互联网、咨询、电信、零售、旅游等,涉及岗位包括大数据、数据分析、市场、产品、运营、咨询、投资等。
数据分析师考证考什么内容,主要取决于您要报考的等级。每个等级分别从理论基础、软件工具、分析方法、业务分析、可视化五个方面进行了要求,只有同时满足各个方面的要求才是一名优秀的数据分析人才。具体来说:
CDA LEVEL I,即业务数据分析师,主要考察您对统计学、概率论基础知识的掌握,以及对Excel、SQL等软件工具的熟练运用。您需要能够根据问题业务指标提取数据库中相关数据,进行数据的探索、整理、清洗、处理,并通过相应数据分析方法和模型,结合相关软件完成数据的分析和报告。
CDA LEVEL II,分为建模分析师和大数据分析师两种方向。建模分析师主要考察您对多元统计、机器学习等理论知识的掌握,以及对Python、R、SPSS Modeler等软件工具和SQL数据库的熟练运用。您需要能够从海量数据中搜集并提取信息,针对不同分析主体,可以熟练地进行维度分析,通过相关机器学习算法,结合相关工具和软件完成数据的处理和分析。大数据分析师主要考察您对Python语言和Linux操作系统知识的掌握,以及对Hadoop、Hive、Spark等专业大数据架构及分析软件的熟练运用。您需要能够从海量数据中提取相关信息,并能够结合python和相关机器学习算法,形成严密的大数据分析报告。
CDA LEVEL III,即数据科学家,主要考察您对计算机科学技术、大数据高级处理技术、企业级架构设计、高级机器学习与AI深度学习算法以及项目管理方法的掌握。您需要能够将企业的数据资产进行有效的整合和管理,建立内外部数据的连接;熟悉企业级大数据与数据仓库的构建,可以指导ETL工程师业务工作;可以面向数据挖掘运用主题构造数据集市;在人和数据之间建立有机联系,面向用户数据创造不同特性的产品和系统;具有数据规划的能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08