京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据不平衡是指在某个分类问题中,不同类别的样本数量严重失衡。这种情况会对机器学习模型造成一定挑战,因为模型倾向于将大数目类别作为主要预测。解决数据不平衡问题是一个非常重要的机器学习任务,它可以帮助提高模型的准确性和鲁棒性。
以下是几种解决数据不平衡问题的方法:
过采样技术是指增加少数类别的样本数量,以使得数据集中各个类别之间的样本数量差异更小。过采样技术包括如下几种方法:
2.使用欠采样技术
欠采样技术是指减少多数类别的样本数量,以使得数据集中各个类别之间的样本数量差异更小。欠采样技术包括如下几种方法:
3.结合过采样和欠采样技术
使用欠采样和过采样技术可以通过结合两者的优势来提高模型的性能。通常,该方法首先进行随机欠采样以减少多数类别的样本数量,并且然后进行SMOTE或ADASYN过采样以增加少数类别的样本数量。
4.使用代价敏感学习
代价敏感学习方法是指给不同类型的样本赋予不同的代价值,以调整模型中的错误分类成本。即将模型的目标函数修改为考虑不同类别之间的错误惩罚权重,并根据不同的代价值重新评估模型的损失函数。这可以帮助模型更好地处理数据不平衡问题。
5.使用集成学习技术
集成学习技术通过结合多个模型的决策来提高模型的性能。其中可以使用如下几种方法:
总之,解决数据不平衡问题是一个非常重要的机器学习任务。需要注意的是,在选择方法时,应该根据
数据不平衡的具体情况和问题来选择,不同方法适用于不同的场景。例如,在少数类别样本数量极少的情况下,过采样技术可能会导致过拟合,需要结合欠采样技术减少噪声;在多数类别和少数类别之间存在重叠区域的情况下,代价敏感学习可能会更加有效。
此外,解决数据不平衡问题的方法并不一定是完全解决问题的答案。还需要考虑到模型本身的特性以及数据集的特征。应该始终保持对数据的深入理解,并持续评估和优化模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15