
SPSS 是一种功能强大的统计分析软件,常用于数据清理、探索性数据分析、假设检验等数据处理任务。在进行假设检验时,我们通常需要判断数据是否符合正态分布,因为很多假设检验方法都要求数据服从正态分布。在 SPSS 中,可以通过多种方法来判断数据是否符合正态分布,本文将介绍如何使用 K-S 检验和 S-W 检验以及对它们的样本量要求。
正态分布(normal distribution)是概率论中最重要的概率分布之一,其形状呈钟形曲线,左右对称,平均值等于中位数等特点。许多自然现象和社会现象都服从正态分布,如身高、体重、智力分数等。
SPSS 中可以通过多种方法来判断数据是否符合正态分布,这里介绍两种常见的方法:K-S 检验和 S-W 检验。
K-S(Kolmogorov-Smirnov)检验是一种非参数检验方法,其基本思想是比较样本分布与标准正态分布或其他已知分布的差异程度。具体步骤如下:
在 SPSS 中进行 K-S 检验的具体步骤如下:
K-S 检验的优点是不需要对数据进行任何假设,但它也有一些缺点,例如对样本量和分布的偏斜程度较为敏感,且只能检验单个变量是否符合正态分布。
S-W(Shapiro-Wilk)检验也是一种常用的正态性检验方法,它基于样本数据的标准化值,具有较好的效率和精度。其基本思想是比较样本数据与标准正态分布的差异程度。具体步骤如下:
其 p 值。如果 p 值小于等于显著性水平 alpha,则拒绝原假设,认为样本数据不符合正态分布。
在 SPSS 中进行 S-W 检验的具体步骤如下:
与 K-S 检验相比,S-W 检验更加稳健,对样本量和分布的偏斜程度不敏感。但它也有一些缺点,例如对极端值比较敏感,且只能检验单个变量是否符合正态分布。
K-S 和 S-W 检验对样本量的要求略有不同。一般来说,样本量越大,判断正态性的效果越好,因此建议在进行正态性检验时尽可能增加样本量。下面是 K-S 和 S-W 检验对样本量的具体要求。
需要注意的是,虽然 K-S 和 S-W 检验对样本量的要求不同,但它们都假设样本来自一个连续分布且独立同分布,因此对于非连续型数据或存在相关性的数据,应该采用其他方法来进行正态性检验。
在 SPSS 中,可以使用 K-S 和 S-W 检验来判断数据是否符合正态分布。K-S 检验通常适用于大样本量的情况下,而 S-W 检验更加稳健,适用于样本量在 50 到 200 之间的情况。此外,需要注意的是,正态性检验只是判断数据是否符合正态分布,无法证明数据一定服从正态分布,因此在进行假设检验时仍要谨慎。
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12