
Pandas 是一种流行的数据分析工具,它提供了一系列的数据结构和函数,用于大规模数据处理。在 Pandas 中,我们经常需要对数据进行唯一值筛选和排序操作,以便更好地理解和分析数据。本篇文章将介绍如何使用 Pandas 获取列中的唯一值并进行排序。
要获取 Pandas 列中的唯一值,我们可以使用 unique()
函数。这个函数返回一个由所有不同值组成的数组,并按照它们出现的顺序排列。以下是使用 unique()
函数获取列中唯一值的示例代码:
import pandas as pd
# 创建数据框
data = {'name': ['Alice', 'Bob', 'Charlie', 'Alice'],
'age': [25, 30, 20, 25]}
df = pd.DataFrame(data)
# 获取 name 列中的唯一值
unique_names = df['name'].unique()
print(unique_names)
输出结果为:
['Alice' 'Bob' 'Charlie']
可以看到,unique()
函数返回了一个包含 'Alice'
、'Bob'
和 'Charlie'
的数组,这些是 name 列中的唯一值。
除了获取唯一值之外,我们还可能需要将唯一值按照某种规则进行排序。例如,我们希望按照字母顺序对 name 列中的唯一值进行排序。为此,我们可以将 unique()
函数与 Python 的内置 sorted()
函数结合使用。以下是使用 unique()
和 sorted()
函数获取唯一值并进行排序的示例代码:
import pandas as pd
# 创建数据框
data = {'name': ['Alice', 'Bob', 'Charlie', 'Alice'],
'age': [25, 30, 20, 25]}
df = pd.DataFrame(data)
# 获取 name 列中的唯一值并按字母顺序排序
unique_names = sorted(df['name'].unique())
print(unique_names)
输出结果为:
['Alice', 'Bob', 'Charlie']
可以看到,唯一值数组被按照字母顺序重新排序了。
在实际数据分析中,我们可能需要按照多个列获取唯一值,并按照其中一列进行排序。例如,我们希望获取一个唯一的人员列表,该列表包含所有不同年龄的人名,并按照人名的字母顺序排序。为此,我们可以使用 Pandas 的 drop_duplicates()
函数和 sort_values()
函数。以下是使用这两个函数按照多个列获取唯一值并排序的示例代码:
import pandas as pd
# 创建数据框
data = {'name': ['Alice', 'Bob', 'Charlie', 'Alice', 'Bob'],
'age': [25, 30, 20, 25, 30],
'gender': ['F', 'M', 'M', 'F', 'M']}
df = pd.DataFrame(data)
# 获取唯一的人员列表,并按照字母顺序排序
unique_people = df.drop_duplicates(subset=['name', 'age']).sort_values('name')
print(unique_people)
输出结果为:
name age gender
0 Alice 25 F
2 Charlie 20 M
1 Bob 30 M
可以看到,唯一的人员列表包含了所有不同年龄的人名,并按照人名的字母顺序重新排序。
在本篇文章中,我们介绍了如何使用 Pandas 获取列中的唯一值并进行排序。我们首先使用 unique()
函数获取唯一值,然后使用 Python 的内置 sorted()
函数对唯一值进行排序。如果
需要按照多个列获取唯一值并排序,我们可以使用 Pandas 的 drop_duplicates()
函数和 sort_values()
函数。这些函数可以帮助我们快速地对数据进行处理,以便更好地理解和分析数据。
当然,除了上述方法外,还有其他的方法可以获取唯一值和排序。例如,可以使用 Pandas 的 value_counts()
函数获取唯一值,并使用 sort_index()
函数按索引排序。以下是使用这种方法获取唯一值并排序的示例代码:
import pandas as pd
# 创建数据框
data = {'name': ['Alice', 'Bob', 'Charlie', 'Alice', 'Bob'],
'age': [25, 30, 20, 25, 30],
'gender': ['F', 'M', 'M', 'F', 'M']}
df = pd.DataFrame(data)
# 获取 name 列中的唯一值并按字母顺序排序
unique_names = df['name'].value_counts().sort_index().index.tolist()
print(unique_names)
输出结果为:
['Alice', 'Bob', 'Charlie']
可以看到,唯一值数组被按照字母顺序重新排序了。
总之,获取 Pandas 列中的唯一值并进行排序是数据分析中常见的操作。我们可以使用 unique()
函数和 Python 的内置 sorted()
函数或者使用 Pandas 的 drop_duplicates()
函数和 sort_values()
函数等方法来完成这个任务。无论哪种方法,都可以帮助我们更好地理解和分析数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04