京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SQL Server 提供了许多用于处理 JSON 数据的功能,其中之一是解析 JSON 数组。在此篇文章中,我将会介绍如何在 SQL Server 中解析 JSON 数组以及一些相关的注意事项。
JSON 数组的基本概念
JSON 数组是一种存储多个值的方式,每个值都可以是一个简单的类型(例如字符串、数字或布尔值)或者是一个复杂的类型(例如对象或其他数组)。JSON 数组由方括号 [] 包围,其中的值使用逗号分隔。
示例:
[ { "name": "John", "age": 30, "city": "New York" }, { "name": "Mary", "age": 25, "city": "Los Angeles" } ]
以上是一个包含两个对象的 JSON 数组,每个对象都有 name、age 和 city 三个属性。
SQL Server 如何解析 JSON 数组
SQL Server 提供了 OPENJSON 函数来解析 JSON 数据。通过这个函数,你可以将 JSON 数组转换成表格形式,每行代表一个数组元素,每列代表一个属性。
以下是 OPENJSON 函数的基本语法:
OPENJSON(json_expression[, path]) [WITH (property_name data_type [,...])]
示例:
DECLARE @json NVARCHAR(MAX) SET @json = '[{"name": "John","age": 30,"city": "New York"},{"name": "Mary","age": 25,"city": "Los Angeles"}]' SELECT * FROM OPENJSON(@json)
以上 SQL 查询将会返回以下结果:
+-----------+-------+-------------+
| key | value | type |
+-----------+-------+-------------+
| 0 | -- | 5 (= JSON_ARRAY)|
| [0].name | John | 1 (= JSON_STRING)|
| [0].age | 30 | 2 (= JSON_INT)|
| [0].city | New York | 1 (= JSON_STRING)|
| 1 | -- | 5 (= JSON_ARRAY)|
| [1].name | Mary | 1 (= JSON_STRING)|
| [1].age | 25 | 2 (= JSON_INT)|
| [1].city | Los Angeles | 1 (= JSON_STRING)|
+-----------+-------+-------------+
在上面的查询中,我们使用了 OPENJSON 函数来解析 JSON 数组,并且没有指定 path 参数。因此,整个 JSON 对象都被解析了。OPENJSON 函数返回了一个表格,其中每行代表一个数组元素,每列代表一个属性。具体来说,表格包含三列:
注意事项
在使用 OPENJSON 函数时,需要注意以下几点:
总结
SQL Server 提供了 OPENJSON 函数来解析 JSON 数据,可以将 JSON 数组转换成表格形式,方便后续的数据处理。在
使用 OPENJSON 函数时,需要注意传入的 JSON 数组必须是有效的 JSON 格式,并且如果数组中包含了对象数组,则需要使用嵌套的 OPENJSON 函数来解析。此外,OPENJSON 函数只能返回基本数据类型,如果要返回复杂数据类型,需要进行一些转换操作。
在处理多维数组时,可以使用 CROSS APPLY 子句来展开数组。以下是一个具有嵌套数组和对象的示例:
{ "name": "John", "age": 30, "hobbies": [ { "name": "reading", "level": 3 }, { "name": "swimming", "level": 2 } ] }
我们可以使用如下 SQL 查询来解析该 JSON 对象:
DECLARE @json NVARCHAR(MAX) SET @json = '{"name": "John","age": 30,"hobbies": [{"name": "reading", "level": 3}, {"name": "swimming", "level": 2}]}' SELECT name, age, hobby_name, hobby_level FROM OPENJSON(@json) WITH (
name VARCHAR(50),
age INT,
hobbies NVARCHAR(MAX) AS JSON
) AS person CROSS APPLY OPENJSON(person.hobbies) WITH (
hobby_name VARCHAR(50),
hobby_level INT );
以上 SQL 查询将会返回以下结果:
+------+-----+------------+-------------+ | name | age | hobby_name | hobby_level | +------+-----+------------+-------------+ | John | 30 | reading | 3 | | John | 30 | swimming | 2 | +------+-----+------------+-------------+
在查询中,我们使用了 CROSS APPLY 子句来展开 hobbies 数组,并用嵌套的 WITH 子句来解析数组中的对象。最终得到包含两列的结果集,其中每行代表一个 hobby 兴趣。
结论
在 SQL Server 中,可以使用 OPENJSON 函数来解析 JSON 数组。通过将 JSON 数组转换为表格形式,可以方便地进行后续的数据处理。在使用 OPENJSON 函数时,需要注意传入的 JSON 数组必须是有效的 JSON 格式,并且如果数组中包含了对象数组,则需要使用嵌套的 OPENJSON 函数来解析。此外,在处理多维数组时,可以使用 CROSS APPLY 子句来展开数组。
推荐学习书籍
《**CDA一级教材**》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20