京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在Pandas中提取特定值的行和列标签可以通过许多不同的方法来实现。在本文中,我们将探讨常用的几种方法,包括使用.loc索引器、使用.iloc索引器、使用布尔索引、使用isin()方法以及使用query()方法。
.loc索引器是一种基于标签的索引器,它可以根据数据集的行和列标签来选择特定的数据。要使用.loc索引器提取特定值的行和列标签,可以执行以下步骤:
首先,我们需要创建一个DataFrame对象。以下是一个示例DataFrame:
import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]}, index=['x', 'y', 'z'])
这将创建以下DataFrame:
a b c x 1 4 7 y 2 5 8 z 3 6 9
现在,我们想要提取行标签为'y'和'z',列标签为'a'和'b'的数据。我们可以使用.loc索引器按以下方式进行操作:
result = df.loc[['y', 'z'], ['a', 'b']]
这将返回以下结果:
a b y 2 5 z 3 6
.iloc索引器是一种基于位置的索引器,它可以根据数据集中的行和列位置来选择特定的数据。要使用.iloc索引器提取特定值的行和列标签,可以执行以下步骤:
首先,我们需要创建一个DataFrame对象。以下是一个示例DataFrame:
import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]}, index=['x', 'y', 'z'])
这将创建以下DataFrame:
a b c x 1 4 7 y 2 5 8 z 3 6 9
现在,我们想要提取第二个和第三个行,以及第一个和第二个列的数据。我们可以使用.iloc索引器按以下方式进行操作:
result = df.iloc[1:3, 0:2]
这将返回以下结果:
a b y 2 5 z 3 6
布尔索引允许我们根据某些条件筛选数据。要使用布尔索引提取特定值的行和列标签,可以执行以下步骤:
首先,我们需要创建一个DataFrame对象。以下是一个示例DataFrame:
import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]}, index=['x', 'y', 'z'])
这将创建以下DataFrame:
a b c x 1 4 7 y 2 5 8 z 3 6 9
现在,我们想要提取所有行标签包含'y'和'z'的数据,以及所有列标签为'b'和'c'的数据。我们可以使用布尔索引按以下方式进行操作:
result = df.loc[df.index.isin(['y', 'z']), ['b', 'c']]
这将返回以下结果:
b c y 5 8 z 6 9
isin()方法可用于检查数据集中的值是否与给定列表中的任何值匹配。要使用isin()方法提取特定值的
行和列标签,可以执行以下步骤:
首先,我们需要创建一个DataFrame对象。以下是一个示例DataFrame:
import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]}, index=['x', 'y', 'z'])
这将创建以下DataFrame:
a b c x 1 4 7 y 2 5 8 z 3 6 9
现在,我们想要提取所有行标签为'y'和'z'的数据,以及所有列标签为'b'和'c'的数据。我们可以使用isin()方法按以下方式进行操作:
result = df.loc[df.index.isin(['y', 'z']), df.columns.isin(['b', 'c'])]
这将返回以下结果:
b c y 5 8 z 6 9
query()方法可用于根据某些表达式筛选数据。要使用query()方法提取特定值的行和列标签,可以执行以下步骤:
首先,我们需要创建一个DataFrame对象。以下是一个示例DataFrame:
import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]}, index=['x', 'y', 'z'])
这将创建以下DataFrame:
a b c x 1 4 7 y 2 5 8 z 3 6 9
现在,我们想要提取所有行标签为'y'和'z'的数据,以及所有列标签为'b'和'c'的数据。我们可以使用query()方法按以下方式进行操作:
result = df.query("index == 'y' or index == 'z'")[['b', 'c']]
这将返回以下结果:
b c y 5 8 z 6 9
总结
以上是在Pandas中提取特定值的行和列标签的几种方法。这些方法包括使用.loc索引器、使用.iloc索引器、使用布尔索引、使用isin()方法以及使用query()方法。无论使用哪种方法,都可以根据具体情况选择最合适的方法来提取所需的数据。
想快速入门Python数据分析?这门课程适合你!
如果你对Python数据分析感兴趣,但不知从何入手,推荐你学习《山有木兮:Python数据分析极简入门》。这门课程专为初学者设计,内容简洁易懂,手把手教你掌握Python数据分析的核心技能,助你轻松迈出数据分析的第一步。

学习入口:https://edu.cda.cn/goods/show/3429?targetId=5724&preview=0
开启你的Python数据分析之旅,从入门到精通,只需一步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20