
拥抱大数据,激发金融新活力
近几年互联网金融呈现爆发式增长,随时、随地、随需的金融服务正在成为普通消费者的一致要求。互联网金融以极低的成本、极高的效率与海量的金融用户进行频繁的互动,这是传统金融行业所不具备的优势。随着互联网和传统行业的跨界融合,越来越多的金融用户通过数字渠道开展日常金融活动,产品和服务也转变为数字化方式供给,这就要求IT技术支撑也要随之进行相应的变革,如何利用领先的IT技术应对互联网金融的冲击,成为传统金融行业CIO关注的重点。
大数据创新之风,吹向传统金融行业
大数据技术近年来蓬勃发展,从2013年的单一批处理负载逐渐过渡到融合大数据平台,实现基础设施层复用;再到今天乃至未来的企业级数据智能,其正在和传统数据库数据处理技术融合。在应用方面,也从最开始的消费互联网逐步向产业互联网蔓延,可以说大数据助力创新之风已经吹向了全行业。
作为百业之王的金融业,利用大数据实现业务创新成为必然。在移动化、个性化、社交化,实时化的业务发展下,数据呈现了更多的维度,数据所反映的内容也更加详尽,对用户行为的捕捉更加快速,也更加精细。当用户的一举一动通过数字化技术被记录下来时,金融业如何借助数据掌控、分析,实现对用户一举一动的察言观色,从而提供更加适合的服务已然成为大数据时代金融业面临的挑战。
实现大数据,三步融合是关键
从数据处理角度来讲,要实现大数据,无非类似于把大象塞冰箱,共分三步:第一,解决所有数据汇集问题;第二,解决数据处理问题;第三,把数据变现进行价值分享。
在数据汇集方面,我们看到银行的传统渠道,如POS、ATM、柜面、电话银行、网上银行被互联网化。除此之外,在与第三方互联网公司合作的时候,有些跨界数据,如我们的差旅信息、消费信息等等也都成为大数据的重要来源。总而言之,数据汇集呈现了融合的趋势。
在解决数据处理方面,也同样呈现了融合特点。这里包含两个层面:第一个层面,与交易相关的数据必须要实现强一致性;第二个层面,大数据平台的相关数据,让我们更加细致的捕捉客户行为细节。这两者相互融合才能让我们看到客户全景,好比现在静止的照片变成动态视频,长宽高的三维信息变成含有时间维度的四维信息,或者我们可以理解为一张平面照片变成了全息图像。
在数据变现实现价值共享方面,我们更要面对无法逃避的创新融合。在线征信要真正做好,我们需要查询很多银行以外的社会数据,必须从业务方面通过合作方式打通数据共享。如何进行融合分析,如何自动化衔接,如何减少人工环节,如何实现秒级查询,这都需要大数据发挥作用。
可以说,大数据业务呈现了实时在线性、业务持续性、跨多元数据的特点,真正实现大数据的处理,做好融合是关键的开门之钥。
金融大数据应用的价值探索
做好数据汇集、数据处理、数据共享仅仅是从技术上解决了大数据的数据处理问题,然而落实到具体应用中,就需要结合金融行业的业务特点。从面来看,信贷业务、精准营销、客服业务、舆情监测都可以通过大数据进行很好的价值探索。
信贷业务: 传统的信贷业务风险判断要依赖有经验的主管判断,势必造成无法规模化,如果把信贷主管积累的经验进行数据化,通过引入数据捕捉客户行为,从而判断信贷风险,将是提升信贷效率的重要手段。所以说,通过数据+模型实现高效率+低风险是大数据对信贷业务的重要应用。
精准营销:精准营销最终目的是提升营销的成功率。传统金融机构对一百万个客户进行营销,最终真正有效的客户可能只有一万或者一千,这意味着我们做了很多没有价值的工作。通过数据挖掘方法建立精准目标客户定位模型,可以有效协助提升营销成功率,并降低营销成本。同时,我们也发现,有些人为了看场电影能够打折,或者旅游出行享受更多的便捷服务而申请某银行的信用卡,这说明依托大数据的跨界营销也能很好的帮助金融行业提升效益,将成为未来的重要发展方向。
客服业务:传统情况下,银行和客户沟通的渠道无外乎语音、网络、短信等,每一种渠道互动都会流露客户的某些特征。利用大数据技术将这些特征进行提取、分析,便可以很好的提升客服体验,并降低成本。想想如果把呼叫中心的每一通电话沟通时间缩短哪怕几秒,那每天成千上万客服电话缩短的时间及整体成本将极为可观。
舆情监控:基于大数据,可以从互联网获得与银行相关的评价信息,通过情感分析模型判断其正负面倾向;或者从客户点击网银行为,分析客户的点击路径,对重点网银栏目布局进行优化等等。通过大数据辨别客户的痛点和兴趣点,从而制定有针对性的完善策略,不仅可以巩固现有客户,拓展新的客户,甚至还可能创造出一些新的业务价值增长点。
拥抱大数据,激发金融新活力
大数据为传统银行的数字化转型展现了一幅美妙的宏伟蓝图,吸引了众多厂商为之不断创新和努力,华为是其中的佼佼者。华为大数据平台源于开源,高于开源,回馈开源。目前在开源社区的贡献度正在向全球第二位迈进。技术上不断追求,行业应用方面也不断实践,目前华为大数据平台已经成功应用于多家金融机构。未来,随着技术的不断探索,以及与合作伙伴的深度联合创新,相信华为的大数据平台将助力更多的金融机构数字化转型,激发崭新活力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22