京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Pandas是一个广泛使用的Python库,用于数据分析和处理。Pandas中的核心数据结构是DataFrame,这是一个表格形式的数据结构,类似于Excel表格或SQL表。DataFrame具有许多功能,例如数据排序、过滤、统计和聚合等。
在DataFrame中,我们通常需要从单元格中获取值以执行特定操作。在本文中,我们将讨论如何从Pandas DataFrame单元格获取值。
一、通过行列索引器获取值
Pandas支持使用行和列索引器来获取单个单元格的值。以下是如何使用行列索引器来获取DataFrame中特定单元格的值的示例代码:
import pandas as pd
# 创建一个新的DataFrame对象
data = {'姓名': ['John', 'Mike', 'Sarah'],
'年龄': [25, 30, 27],
'性别': ['男', '男', '女']}
df = pd.DataFrame(data)
# 从第二行第一列(0-based)的单元格获取值
value = df.iloc[1, 0]
print(value)
上述代码创建了一个包含三列数据的简单DataFrame对象,其中包含“姓名”、“年龄”和“性别”列。然后,我们使用iloc函数来获取第二行第一列(0-based)的单元格值,并将其存储到变量中。最后,使用print函数打印单元格的值。
二、使用at和iat方法获取单元格值
Pandas还提供了名为at和iat的两种方法,用于在DataFrame中获取单个值。这些方法比使用行列索引器更快,因为它们没有必要遍历整个DataFrame。
在使用at和iat方法时,您需要提供行和列的位置索引。以下是使用at和iat方法从DataFrame中获取值的示例代码:
import pandas as pd
# 创建一个新的DataFrame对象
data = {'姓名': ['John', 'Mike', 'Sarah'],
'年龄': [25, 30, 27],
'性别': ['男', '男', '女']}
df = pd.DataFrame(data)
# 使用'at'方法获取第二行第一列(0-based)的单元格值
value1 = df.at[1, '姓名']
print(value1)
# 使用'iat'方法获取第二行第一列(0-based)的单元格值
value2 = df.iat[1, 0]
print(value2)
上述代码中,我们首先创建了一个包含三列数据的简单DataFrame对象。然后,我们使用at函数和iat函数分别获取第二行第一列(0-based)的单元格值,并将其存储到变量中。最后,我们使用print函数打印单元格的值。
三、使用loc和iloc方法获取多个单元格的值
有时,您可能需要从Pandas DataFrame中获取多个单元格的值。在这种情况下,您可以使用loc和iloc方法,这两种方法都可以用于选择行和列的子集。以下是如何使用loc和iloc方法从DataFrame中获取多个单元格值的示例代码:
import pandas as pd
# 创建一个新的DataFrame对象
data = {'姓名': ['John', 'Mike', 'Sarah'],
'年龄': [25, 30, 27],
'性别': ['男', '男', '女']}
df = pd.DataFrame(data)
# 使用'loc'方法获取第一行至第二行,"姓名"至"年龄"列的所有单元格值
values1 = df.loc[0:1, '姓名':'年龄']
print(values1)
# 使用'iloc'方法获取第一行至第二行,第一列至第二列(0-based)的所有单元格值
values2 = df.iloc[0:2, 0:2]
print(values2)
上述代码中,我们首先创建了一个包
含三列数据的简单DataFrame对象。然后,我们使用loc方法和iloc方法分别获取第一行至第二行、"姓名"至"年龄"列的所有单元格值和第一行至第二行、第一列至第二列(0-based)的所有单元格值,并将它们存储到变量中。最后,我们使用print函数打印多个单元格的值。
四、使用apply方法获取单元格值
Pandas还提供了一个名为apply的方法,可以应用自定义函数来对DataFrame进行操作。您可以使用apply方法来获取每个单元格的值,并将其传递给自定义函数进行处理。例如,以下是如何使用apply方法从DataFrame中获取单个单元格的值的示例代码:
import pandas as pd
# 创建一个新的DataFrame对象
data = {'姓名': ['John', 'Mike', 'Sarah'],
'年龄': [25, 30, 27],
'性别': ['男', '男', '女']}
df = pd.DataFrame(data)
# 定义一个函数,用于获取DataFrame中某个单元格的值
def get_value(row, col):
return row[col]
# 使用'apply'方法获取第二行第一列(0-based)的单元格值,并将其传递给自定义函数进行处理
value = df.apply(lambda x: get_value(x, 0), axis=1).iloc[1]
print(value)
上述代码中,我们首先创建了一个包含三列数据的简单DataFrame对象。然后,我们定义了一个自定义函数get_value,用于获取DataFrame中某个单元格的值。接下来,我们使用apply方法从DataFrame中获取第二行第一列(0-based)的单元格值,并将其传递给自定义函数进行处理。最后,我们使用iloc函数和行索引器来选择返回值列表中的第二个元素,并将其存储到变量中。最终,我们使用print函数打印单元格的值。
总结
在本文中,我们讨论了如何从Pandas DataFrame单元格中获取值。我们介绍了使用行列索引器、at和iat方法、loc和iloc方法以及apply方法来获取单个单元格或多个单元格的值的示例代码。这些技术可以帮助您更有效地处理和操作Pandas DataFrame数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07