京公网安备 11010802034615号
经营许可证编号:京B2-20210330
requests和urllib.request是Python中两个常用的HTTP客户端库,它们都可以用来发送HTTP请求并处理响应。但是,它们之间也有一些重要的区别。
首先,requests是一个第三方库,而urllib.request是Python标准库的一部分。因此,使用requests需要先安装该库,而urllib.request则已经包含在Python中。当然,随着Python版本的不同,urllib.request的功能也会有所变化。
其次,在使用上,requests相对于urllib.request更加简单易用。requests提供了一系列的高级API,使得常见的HTTP请求操作变得十分容易。例如,发送一个GET请求只需要一行代码:response = requests.get(url)。同时,requests还支持自动解析JSON格式的响应、文件上传、会话管理等高级功能,让开发者能够更快速地完成复杂的HTTP请求操作。而urllib.request相对于requests就显得笨拙一些,需要较多的代码来实现相同的功能。
另外,requests提供了更加灵活的错误处理机制。当发生网络错误或服务器返回错误状态码时,requests会抛出相应的异常,如ConnectionError、Timeout等,方便开发者进行相应的处理。而在urllib.request中,需要通过捕获URLError异常来处理网络错误,并通过判断HTTP状态码来处理服务器返回的错误信息。
此外,requests的性能也比urllib.request更好。requests使用了基于urllib3的连接池技术,可以重用TCP连接,减少了请求响应的延迟和网络带宽的占用,并且对HTTPS的支持也更加完善。而urllib.request则需要每次发送请求都重新建立连接,相比之下性能较差。
最后,requests具有更广泛的社区支持和文档资料。由于requests易用性高、功能强大、性能优越,所以在Python开发者中拥有非常广泛的用户群体,因此相关的问题和解决方案也更容易找到。而urllib.request则相对来说受关注度较少,相关文档资料也比较匮乏。
综上所述,requests和urllib.request虽然都是Python中常用的HTTP客户端库,但是在使用上存在一些区别,开发者可以根据自己的需要灵活选择。如果只是简单地进行HTTP请求操作,或者需要与标准库紧密集成,那么urllib.request可以满足要求;如果需要高级功能、更好的性能和灵活的错误处理,或者需要更广泛的社区支持,那么建议选择requests。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26