京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中的NumPy(Numerical Python)是一种基于Python语言的科学计算库,其提供了许多高效的数值计算工具和数组操作函数。其中包括计算样本标准差的函数。
要在Python中使用NumPy计算样本标准差,可以使用numpy.std函数。该函数的语法如下:
numpy.std(a, axis=None, dtype=None, ddof=0, keepdims=)
其中,参数a表示输入的数据数组,可以是一维或多维数组;axis表示沿着哪个轴方向进行计算,如果不指定则计算所有元素的标准差;dtype表示输出结果的数据类型,如果不指定则默认为输入数组的数据类型;ddof表示自由度(degrees of freedom),即用于计算样本方差的分母系数,当计算全体数据的标准差时,ddof应该为0,当计算样本的标准差时,ddof应该为1;keepdims表示是否保持数组的维度不变,在计算完毕后,默认会将标准差的维度缩小。
例如,要计算以下一维数组a的样本标准差:
import numpy as np
a = np.array([1, 2, 3, 4, 5])
std_a = np.std(a, ddof=1)
print(std_a) # 输出:1.5811388300841898
上述代码中,ddof参数被设置为1,表示计算样本标准差。计算结果为1.58。
同样的,如果要计算以下二维数组b每一列的样本标准差:
import numpy as np
b = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
std_b = np.std(b, axis=0, ddof=1)
print(std_b) # 输出:[2.44948974 2.44948974 2.44948974]
上述代码中,axis参数被设置为0,表示沿着列方向计算标准差。计算结果为每一列的样本标准差。
除了numpy.std函数外,NumPy还提供了其他计算标准差的函数。例如,可以使用numpy.var函数计算方差,然后再对结果求平方根即可得到标准差:
import numpy as np
a = np.array([1, 2, 3, 4, 5])
var_a = np.var(a, ddof=1)
std_a = np.sqrt(var_a)
print(std_a) # 输出:1.5811388300841898
另外,还可以使用numpy.mean函数计算均值,然后再使用NumPy的广播功能计算标准差:
import numpy as np
a = np.array([1, 2, 3, 4, 5])
mean_a = np.mean(a)
std_a = np.sqrt(np.mean((a - mean_a) ** 2))
print(std_a) # 输出:1.5811388300841898
使用广播的方式计算标准差更加灵活,可以适用于不同维度和形状的数组。
总之,NumPy提供了多种计算样本标准差的方法,包括直接使用numpy.std函数、先计算方差再求平方根、以及使用均值和广播方式计算。选择哪种方法取决于具体情况,需要根据数据的维度、形状、大小以及计算效率等因素来选择最合适的方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23