
在pandas中实现SQL查询中的CASE-WHEN-THEN-END功能是一项非常有用的技能,可以帮助我们快速和高效地处理数据。我将向你介绍如何在Pandas中实现此功能,并提供一些示例,以便您更好地理解。
首先,让我们先回顾一下SQL中的CASE-WHEN-THEN-END语句是什么。它通常用于根据某些条件对数据进行分类或转换。例如,假设我们有一个“订单”表,其中包含客户的姓名、订单金额和订单日期。我们可以使用CASE-WHEN-THEN-END语句将订单金额按照以下规则进行分类:
在SQL中,可以通过以下方式实现:
SELECT
customer_name,
order_amount,
CASE
WHEN order_amount < 100 class="hljs-string">'Small Order'
WHEN order_amount BETWEEN 100 AND 1000 THEN 'Regular Order'
WHEN order_amount > 1000 THEN 'Large Order'
END AS order_type,
order_date
FROM
orders;
现在让我们看看如何在pandas中实现相同的结果。Pandas提供了类似的功能,称为“np.select”。它将一个布尔数组列表作为第一个参数,每个布尔数组都代表一个条件。第二个参数是一个列表,其中包含与每个条件对应的值。如果没有任何条件被满足,则返回第三个参数作为默认值。以下是如何在Pandas中实现上述示例的代码:
import pandas as pd
import numpy as np
orders = pd.read_csv('orders.csv')
conditions = [
orders['order_amount'] < 100 class="hljs-string">'order_amount'] >= 100) & (orders['order_amount'] <= 1000),
orders['order_amount'] > 1000
]
choices = ['Small Order', 'Regular Order', 'Large Order']
orders['order_type'] = np.select(conditions, choices, default='Unknown')
print(orders)
在这个例子中,我们首先将数据集加载到一个名为“orders”的DataFrame中。然后,我们定义了三个条件,因此我们有三个布尔数组分别代表小额订单、普通订单和大额订单。接下来,我们定义了三个值列表,其中包含与每个条件相对应的值,即“Small Order”、“Regular Order”和“Large Order”。最后,我们使用np.select函数将这些条件和值传递给订单数据集,并将结果存储在名为“order_type”的新列中。
需要注意的是,我们还提供了一个默认值参数,以便处理任何未被满足的条件。在这个例子中,我们将默认值设置为“Unknown”。
此外,在Pandas中,也可以使用“pd.cut”函数来执行类似的操作。它允许我们将连续变量分成离散的区间,并将它们标记为相应的类别。例如,在上面的订单数据集中,我们可以使用以下代码将订单金额划分为三个等距的区间:
orders['order_type'] = pd.cut(orders['order_amount'], 3, labels=['Small Order', 'Regular Order', 'Large Order'])
在这种情况下,我们将订单金额分成三个等距的区间,并将每个区间标记为“Small Order”、“Regular Order”或“Large Order”。
总结起来,Pandas提供了多种实现SQL查询中CASE-WHEN-THEN-END功能的方法,包括使用np.select和pd.cut函数。这些函数都非常有用,可以帮助我们快速、高效地处理数据,并使得数据转换和分类更容易。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12