京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		PyTorch是一种广泛使用的深度学习框架,它提供了丰富的工具和函数来帮助我们构建和训练深度学习模型。在PyTorch中,多分类问题是一个常见的应用场景。为了优化多分类任务,我们需要选择合适的损失函数。在本篇文章中,我将详细介绍如何在PyTorch中编写多分类的Focal Loss。
一、什么是Focal Loss?
Focal Loss是一种针对不平衡数据集的分类损失函数。在传统的交叉熵损失函数中,所有的样本都被视为同等重要,但在某些情况下,一些类别的样本数量可能很少,这就导致了数据不平衡的问题。Focal Loss通过减小易分类样本的权重,使得容易被错分的样本更加关注,从而解决数据不平衡问题。
具体来说,Focal Loss通过一个可调整的超参数gamma(γ)来实现减小易分类样本的权重。gamma越大,容易被错分的样本的权重就越大。Focal Loss的定义如下:
	
 
其中y表示真实的标签,p表示预测的概率,gamma表示调节参数。当gamma等于0时,Focal Loss就等价于传统的交叉熵损失函数。
二、如何在PyTorch中实现Focal Loss?
在PyTorch中,我们可以通过继承torch.nn.Module类来自定义一个Focal Loss的类。具体地,我们可以通过以下代码来实现:
import torch
import torch.nn as nn
import torch.nn.functional as F
class FocalLoss(nn.Module):
    def __init__(self, gamma=2, weight=None, reduction='mean'):
        super(FocalLoss, self).__init__()
        self.gamma = gamma
        self.weight = weight
        self.reduction = reduction
        
    def forward(self, input, target): # 计算交叉熵 ce_loss = F.cross_entropy(input, target, reduction='none') # 计算pt pt = torch.exp(-ce_loss) # 计算focal loss focal_loss = ((1-pt)**self.gamma * ce_loss).mean()
        
        return focal_loss
上述代码中,我们首先利用super()函数调用父类的构造方法来初始化gamma、weight和reduction三个参数。在forward函数中,我们首先计算交叉熵损失;然后,我们根据交叉熵损失计算出对应的pt值;最后,我们得到Focal Loss的值。
三、如何使用自定义的Focal Loss?
在使用自定义的Focal Loss时,我们可以按照以下步骤进行:
我们可以定义一个分类模型,例如一个卷积神经网络或者一个全连接神经网络。
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(784, 128)
        self.fc2 = nn.Linear(128, 10)
        
    def forward(self, x):
        x = x.view(-1, 784)
        x = F.relu(self.fc1(x))
        x = self.fc2(x) return x
我们可以使用自定义的Focal Loss作为损失函数。
criterion = FocalLoss(gamma=2)
我们可以选择一个优化器,例如Adam优化器。
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
在训练模型时,我们可以按
照常规的流程进行,只需要在计算损失函数时使用自定义的Focal Loss即可。
for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 前向传播 outputs = model(images) # 计算损失函数 loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad()
        loss.backward()
        optimizer.step()
在上述代码中,我们首先利用模型对输入数据进行前向传播,然后计算损失函数。接着,我们使用反向传播算法和优化器来更新模型参数,不断迭代直到模型收敛。
四、总结
本篇文章详细介绍了如何在PyTorch中编写多分类的Focal Loss。我们首先了解了Focal Loss的概念及其原理,然后通过继承torch.nn.Module类来实现自定义的Focal Loss,并介绍了如何在训练模型时使用自定义的Focal Loss作为损失函数。通过本文的介绍,读者可以更深入地了解如何处理数据不平衡问题,并学会在PyTorch中使用自定义损失函数来提高模型性能。
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
	
 
	学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28