京公网安备 11010802034615号
经营许可证编号:京B2-20210330
自然语言处理(NLP)是人工智能领域中一个快速发展的分支,它提供了许多技术和方法来对自然语言进行处理。其中,词嵌入(word embedding)是NLP中最重要的技术之一,因为它允许将自然语言转换为计算机可以理解和处理的向量表示形式。
BERT(Bidirectional Encoder Representations from Transformers)是一种有监督的预训练模型,它使用了Transformer架构,并在大型语料库上进行了训练,可以用于各种自然语言处理任务,如文本分类、句子配对等。
BERT模型的输出包含多个层级,其中第一层是输入层,最后一层是输出层,而在中间的隐藏层中,每一个单词都被映射到一个低维度的向量空间中。这些向量就是所谓的BERT词嵌入。
提取BERT词嵌入非常简单,只需要将文本输入BERT模型中,并获取相应隐藏层的输出即可。具体步骤如下:
首先,我们需要安装相应的Python库,包括transformers和torch。可以使用以下命令来安装这些库:
!pip install transformers
!pip install torch
接下来,加载BERT模型并设置为评估模式,以保证Dropout和BatchNormalization层不会被激活。我们可以使用以下代码完成这一步骤:
from transformers import BertTokenizer, BertModel
# 加载BertTokenizer和BertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')
# 设置为评估模式
model.eval()
然后,我们需要将文本转换为BERT可接受的输入格式。具体来说,我们需要使用BertTokenizer对文本进行分词,并将结果转换为BERT的输入ID和Attention Mask张量。以下是一个示例代码:
text = "I love natural language processing."
tokens = tokenizer.tokenize(text)
input_ids = torch.tensor([tokenizer.convert_tokens_to_ids(tokens)])
attention_mask = torch.ones_like(input_ids)
最后,我们可以将输入张量传递给BERT模型并获取相应的隐藏层输出。具体来说,我们将输入ID和Attention Mask张量传递给BertModel,并获取相应的所有隐藏层输出。以下是一个示例代码:
with torch.no_grad():
outputs = model(input_ids, attention_mask=attention_mask)
hidden_states = outputs[2]
在此示例中,我们获取了BERT模型的所有隐藏层输出,可以根据需要选择其中任意一层作为词嵌入。
总之,BERT是一种非常强大的预训练模型,可以用于各种自然语言处理任务。它的词嵌入提取非常简单,只需要将文本输入BERT模型中,并获取相应隐藏层的输出即可。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22