京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Presto是一个分布式SQL查询引擎,常用于大规模数据分析。与之相似的Spark SQL也是一个分布式SQL查询引擎,但是在一些特定情况下,Presto比Spark SQL更快。以下是几个原因:
Presto采用迭代式计算,而不是批处理计算。这意味着Presto可以更加高效地利用硬件资源。迭代式计算通常需要较少的内存,因为每次只会处理一小部分数据,从而避免了对整个数据集进行扫描的开销。这使得Presto能够在处理大量数据时更快速地响应查询请求。
Presto将查询解析和优化阶段与执行阶段分离。在查询解析和优化阶段,Presto使用一系列算法来确定如何最好地执行查询。这种分离式架构可以提高Presto的性能,因为它可以更好地利用现有的计算资源。相反,在Spark SQL中,查询解析和优化阶段与执行阶段混合在一起,这可能导致性能瓶颈。
Presto使用内存表来加速查询。Presto支持内存表,这是一种非常快速的方式来存储和操作数据。当查询需要多次运行时,Presto可以将结果存储在内存表中,以便更快地访问数据。此外,Presto还可以使用内存表来加速连接操作。
Presto支持更广泛的数据源。Presto支持多种数据源,包括Hive、Cassandra和MySQL等。这使得在不同数据源之间进行查询变得更加简单和高效。相反,Spark SQL仅支持Hive和SQL数据源。
Presto支持动态分区。Presto允许动态创建分区,这意味着可以在查询时创建新的分区。这比使用静态分区更加灵活,因为它允许用户在查询时动态调整数据分区,从而提高查询性能。
总体来说,Presto由于其迭代式计算、分离式架构、内存表、更广泛的数据源和动态分区支持等特性,使其在某些情况下比Spark SQL更快。然而,在其他情况下,Spark SQL可能会更适合用于大规模数据处理。因此,根据实际需求来选择最适合的工具非常重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24