京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在神经网络的训练过程中,我们通常会把数据集划分为训练集和验证集。训练集用于训练模型,而验证集则用于评估模型的性能。在实际操作中,有时候我们会遇到训练集和验证集的损失(loss)、准确率(acc)差别过大的情况。这种情况可能会导致模型的泛化能力不足,即在新的数据上表现不佳。接下来我将详细介绍如何解决这个问题。
首先,要检查一下数据集的划分是否合理。一个常见的错误是将数据集直接随机划分成训练集和验证集,而没有考虑数据的特点。例如,如果数据集是时间序列数据,直接进行随机划分会导致训练集和验证集之间存在时间上的重叠,从而使得验证集不能真正反映模型对未来数据的预测能力。因此,在进行数据集划分时,需要根据数据的特点来选择合适的划分方法,以确保训练集和验证集之间没有数据的重复或漏洞。
其次,要检查一下使用的模型是否合适。如果模型太过简单或太过复杂,都可能导致训练集和验证集的性能差别较大。对于太过简单的模型,其容易欠拟合训练数据,而对于太过复杂的模型,则容易过度拟合训练数据,从而使得在验证集上的表现不佳。因此,在选择模型时,需要根据数据的特点、问题的复杂度以及数据量等因素来进行权衡。
为了避免过度拟合,我们可以使用正则化方法对模型进行约束。常见的正则化方法包括L1正则化、L2正则化以及dropout等。这些方法都可以有效地降低模型的复杂度,从而减少过度拟合的风险。当我们发现训练集和验证集之间存在较大差异时,可以尝试使用正则化方法来缓解这个问题。
数据增强是一种有效的方法,可以通过对原始数据进行随机变换来增加数据量,从而提高模型的泛化能力。例如,对图片数据进行裁剪、旋转、翻转等操作,可以生成更多的训练数据,从而使得模型更加鲁棒。在数据集划分合理的情况下,增加数据量可以缓解训练集和验证集之间的差异。
最后,要检查一下模型的超参数是否合理。超参数包括学习率、批量大小、优化器等,这些参数可能对模型的性能产生较大影响。当我们发现训练集和验证集之间存在较大差异时,可以尝试调整超参数来找到更好的平衡点。通常情况下,需要对不同的超参数进行交叉验证,以选择最优的组合。
总结
在神经网络的训练过程中,训练集和验证集之间的差异可能会导致模型的泛化能力不足。我们可以通过检查数据集的划分、选择合适的模型、使用正则化方法、进行数据增强
以及调整超参数等方法来缓解这个问题。在实际应用中,需要根据具体情况选择合适的方法进行处理。
此外,还有一些其他的技巧可以帮助我们更好地解决训练集和验证集之间的差异。例如,可以使用模型集成的方法,将多个模型的预测结果进行加权平均或投票来得到最终结果。同时,也可以使用早停法(early stopping)来防止模型过度拟合,在验证集的性能没有显著提高时及时停止训练。
总之,通过合理的数据集划分、选择合适的模型、使用正则化方法、进行数据增强以及调整超参数等方法,我们可以有效地缓解训练集和验证集之间的差异,提高模型的泛化能力。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05