京公网安备 11010802034615号
经营许可证编号:京B2-20210330
TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中选择并下载各种数据集。然而,在一些情况下,用户可能需要使用本地数据集进行模型训练和测试。在本文中,我们将介绍如何使用TFDS加载本地数据集。
为了加载本地数据集,我们需要做以下几个步骤:
1.准备数据集 2.创建TFDS数据集描述文件 3.使用描述文件加载数据集
首先,我们需要准备我们要使用的数据集。这通常涉及到收集、清洗和组织数据,以便可以轻松地访问数据。在本例中,我们将使用一个简单的示例数据集,其中包含数字图像和相应的标签。
该数据集的目录结构类似于以下内容:
data/
0/
image1.png
image2.png
...
1/
image1.png
image2.png
...
...
在上面的目录结构中,每个数字目录代表一个唯一的标签,并包含与该标签相关联的所有图像。
接下来,我们需要创建一个TFDS数据集描述文件。该文件告诉TFDS如何读取和使用我们的本地数据集。描述文件通常是一个Python模块,其中包含有关数据集的元数据和函数,该函数将数据集加载到内存中。
在描述文件中,我们需要定义以下元数据:
1.名称:数据集的名称。 2.版本:数据集的版本号。 3.描述:数据集的简短描述。 4.特征:数据集的特征(例如,输入和输出的形状、数据类型等)。 5.拆分:数据集应该如何划分以进行训练、验证和测试。 6.下载URL(可选):如果数据集没有被打包成一个文件,请提供一个URL以下载数据集。
以下是一个简单的描述文件示例:
import tensorflow_datasets as tfds import os # Define the metadata for the dataset _DESCRIPTION = 'A dataset containing images of digits.' _VERSION = tfds.core.Version('1.0.0')
_NAME = 'my_dataset' def my_dataset(split): # Define the path to the data directory data_dir = os.path.join(os.getcwd(), 'data') # Define the classes classes = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] # Load the data dataset_builder = tfds.builder(_NAME)
dataset_builder.data_dir = data_dir
dataset_builder.add_images(
os.path.join(data_dir, '*/*'),
labels=classes,
) return dataset_builder.as_dataset(split=split)
在上面的代码中,我们定义了一个名为my_dataset的函数,该函数将数据集加载到内存中。我们还定义了元数据,包括数据集的名称、版本和描述,以及数据集的特征和拆分方式。
最后,我们使用tfds.builder()函数创建了一个dataset_builder对象,并使用add_images()方法将图像添加到数据集中。请注意,此处我们使用了data_dir变量来指定数据集的路径。如果您的数据集存在其他位置,则需要更改此变量的值以反映正确的路径。
使用上述描述文件,我们可以通过调用tfds.load()函数来加载本地数据集。这个函数需要传递三个参数:数据集名称、数据集拆分方式和描述文件的路径或模块。
以下是一个简单的例子:
import tensorflow_datasets as tfds # Load the data my_dataset = tfds.load(
name='my_dataset',
split='train',
data_dir='./data',
download=False,
with_info=True,
) # Print
在上面的代码中,我们使用tfds.load()函数来加载名为my_dataset的数据集,使用了train拆分并指定了数据集路径。此外,我们将with_info参数设置为True以获取有关数据集的元信息。
一旦数据集被加载到内存中,我们可以像其他TFDS数据集一样使用它进行训练或测试。
在本文中,我们介绍了如何使用TFDS加载本地数据集。首先,我们准备了数据集,并创建了一个TFDS数据集描述文件。然后,我们使用tfds.load()函数将数据集加载到内存中,并使用它来训练或测试模型。虽然这种方法可能需要更多的手动操作,但它允许用户使用自己的数据集进行机器学习,从而获得更好的控制和灵活性。
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28