京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:咕隆先森
来源:Python 技术
工作上经常需要与外国友人邮件沟通,奈何工作电脑没有安装有道词典一类的翻译软件,结合自己的需要,自己撸一个桌面翻译神器。
基本思路:基于PySimpleGUI开发桌面GUI→获取键盘输入→接入谷歌翻译API→爬虫获取翻译结果(其中涉及到正则表达式匹配翻译结果)→输出翻译结果→翻译完成。
创建图形用户界面 (GUI)可能很困难, 有许多不同的Python GUI工具包可供选择。最常提到的前三名是 Tkinter, wxPython 和 PyQt (或PySide2). 但是PySimpleGUI的较新工具包,其目的是使创建GUI更加容易。
PySimpleGUI 主要的作用是成为Tkinter, wxPython和PyQt之上的抽象层。您可以将其视为包装器, 拉近设计者与GUI 的距离. 虽然建立GUI 变的很简单, 相对的有很多细节被忽略掉, 也就是说你只能按PySimpleGUI 所提供的功能来使用.这个版本是架设在Tkinter 之上, 当然还有其他的版本, 像是PySimpleGUIQt, PySimpleGUIWx, PySimpleGUIWeb, …
所以说优点呢, 就是简单, 缺点也是简单, 以下大约说明一下使用方法, 其他的 GUI 很难在短短一篇文章就能说个大槪.
代码如下(示例):
import reimport htmlfrom urllib import parseimport requestsimport PySimpleGUI as sg
代码如下(示例):
url = 'http://translate.google.cn/m?q=%s&tl=%s&sl=%s'
该处使用的url网络请求的数据,这里用到了%字符串格式化方法。需要用到三个参数:text——需要翻译的内容, to_language——目标语言类型, text_language——当前语言类型。
代码如下(示例):
def translate(text, to_language="en", text_language="auto"): text = parse.quote(text) url1 = url % (text, to_language, text_language) response = requests.get(url1) data = response.text # print(data) expr = r'(?s)class="(?:t0|result-container)">(.*?)<' result = re.findall(expr, data) print(result) if (len(result) == 0): return "" return html.unescape(result[0])
print语句用于前期调试,调试成功之后可以注释掉,也可以忽略,不影响使用!
代码如下(示例):
sg.theme('bluepurple') # 设置主题font = ("fangsong",12) # 字体仿宋,大小12menu = [["Help",["About","Item","Author"]]] # 菜单栏设置value = ['汉语','英语','日语','法语','俄语','自动'] # 语言选择(前端显示),默认只有6种,可以自己添加var = ['zh','en','ja','fr','ru','auto'] # 语言选择(后端执行时)dic = dict(zip(value,var)) # 语言字典配置layout = [[sg.Menu(menu, tearoff=False)], [sg.Text(text='Input',size=(26,1)), sg.Text(text='将',size=(2,1),justification='center'), sg.Combo(values=value, key='from', size=(10,1)), sg.Text(text='翻译为',size=(5,1),justification='center'), sg.Combo(values=value, key='to', size=(10,1))], [sg.Multiline(key="-IN-",size=(60, 8),font=font)], [sg.Text(text='Output',size=(30,1))], [sg.Multiline(key="-OUT-",size=(60, 8),font=font)], [sg.Text(text='',size=(36,1)), sg.Button("翻译", size=(6,1)), sg.Button("清除", size=(6,1)), sg.Button("退出", size=(6,1))] ]window = sg.Window("自制桌面翻译器", layout, icon="CT.ico") # 设置窗口名称,窗口布局,以及图标
layout为GUI布局,采用列表的模式,根据行列进行排布。
代码如下(示例):
while True: event, values =window.read() if event in (None, "退出"): # 点击“X”或者“退出”按钮时才退出 break if event == "翻译": if values["to"]=='' or values["from"]=='': # 未选择语言类型时弹窗提示 sg.Popup("请选择语言类型后重试,谢谢!") else: tar = translate(values["-IN-"],dic[values["to"]],dic[values["from"]]) window["-OUT-"].Update(tar) if event =="清除": window["-IN-"].Update("") window["-OUT-"].Update("") if event == "About": sg.Popup("使用方法:", "'翻译'确认输入,并输出翻译结果", "'清除'清除已有输入,清空翻译的结果", "'退出'取消,并退出App", title='', font = font, auto_close = 1) if event == "Item": sg.Popup("翻译类型:", "'输入类型' 输入的语言类型", "'输出类型' 输出的语言类型", title = '', font = font, auto_close = 1) if event == "Author": sg.Popup("作者简介:", "姓名:XXXXXX", "Wechat:XXXXXX", "E-mail:XXXXXX@qq.com", title = '', font = font, auto_close = 1)window.close()
windows.read()可以理解为监听,分别有事件event,返回值values。
while循环,当事件为空或者为“退出”是=时,结束循环,并退出。
Popup为消息提示弹窗,可以作为警告,提示,再确认的交互界面。
到这里,整个项目就已经完成了,涉及到的一些基础技能,还需要一点功力,好了,今天的分享就到这里,后续会更新如何使用pyinstaller进行打包分发使用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21