京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:咕隆先森
来源:Python 技术
工作上经常需要与外国友人邮件沟通,奈何工作电脑没有安装有道词典一类的翻译软件,结合自己的需要,自己撸一个桌面翻译神器。
基本思路:基于PySimpleGUI开发桌面GUI→获取键盘输入→接入谷歌翻译API→爬虫获取翻译结果(其中涉及到正则表达式匹配翻译结果)→输出翻译结果→翻译完成。
创建图形用户界面 (GUI)可能很困难, 有许多不同的Python GUI工具包可供选择。最常提到的前三名是 Tkinter, wxPython 和 PyQt (或PySide2). 但是PySimpleGUI的较新工具包,其目的是使创建GUI更加容易。
PySimpleGUI 主要的作用是成为Tkinter, wxPython和PyQt之上的抽象层。您可以将其视为包装器, 拉近设计者与GUI 的距离. 虽然建立GUI 变的很简单, 相对的有很多细节被忽略掉, 也就是说你只能按PySimpleGUI 所提供的功能来使用.这个版本是架设在Tkinter 之上, 当然还有其他的版本, 像是PySimpleGUIQt, PySimpleGUIWx, PySimpleGUIWeb, …
所以说优点呢, 就是简单, 缺点也是简单, 以下大约说明一下使用方法, 其他的 GUI 很难在短短一篇文章就能说个大槪.
代码如下(示例):
import reimport htmlfrom urllib import parseimport requestsimport PySimpleGUI as sg
代码如下(示例):
url = 'http://translate.google.cn/m?q=%s&tl=%s&sl=%s'
该处使用的url网络请求的数据,这里用到了%字符串格式化方法。需要用到三个参数:text——需要翻译的内容, to_language——目标语言类型, text_language——当前语言类型。
代码如下(示例):
def translate(text, to_language="en", text_language="auto"): text = parse.quote(text) url1 = url % (text, to_language, text_language) response = requests.get(url1) data = response.text # print(data) expr = r'(?s)class="(?:t0|result-container)">(.*?)<' result = re.findall(expr, data) print(result) if (len(result) == 0): return "" return html.unescape(result[0])
print语句用于前期调试,调试成功之后可以注释掉,也可以忽略,不影响使用!
代码如下(示例):
sg.theme('bluepurple') # 设置主题font = ("fangsong",12) # 字体仿宋,大小12menu = [["Help",["About","Item","Author"]]] # 菜单栏设置value = ['汉语','英语','日语','法语','俄语','自动'] # 语言选择(前端显示),默认只有6种,可以自己添加var = ['zh','en','ja','fr','ru','auto'] # 语言选择(后端执行时)dic = dict(zip(value,var)) # 语言字典配置layout = [[sg.Menu(menu, tearoff=False)], [sg.Text(text='Input',size=(26,1)), sg.Text(text='将',size=(2,1),justification='center'), sg.Combo(values=value, key='from', size=(10,1)), sg.Text(text='翻译为',size=(5,1),justification='center'), sg.Combo(values=value, key='to', size=(10,1))], [sg.Multiline(key="-IN-",size=(60, 8),font=font)], [sg.Text(text='Output',size=(30,1))], [sg.Multiline(key="-OUT-",size=(60, 8),font=font)], [sg.Text(text='',size=(36,1)), sg.Button("翻译", size=(6,1)), sg.Button("清除", size=(6,1)), sg.Button("退出", size=(6,1))] ]window = sg.Window("自制桌面翻译器", layout, icon="CT.ico") # 设置窗口名称,窗口布局,以及图标
layout为GUI布局,采用列表的模式,根据行列进行排布。
代码如下(示例):
while True: event, values =window.read() if event in (None, "退出"): # 点击“X”或者“退出”按钮时才退出 break if event == "翻译": if values["to"]=='' or values["from"]=='': # 未选择语言类型时弹窗提示 sg.Popup("请选择语言类型后重试,谢谢!") else: tar = translate(values["-IN-"],dic[values["to"]],dic[values["from"]]) window["-OUT-"].Update(tar) if event =="清除": window["-IN-"].Update("") window["-OUT-"].Update("") if event == "About": sg.Popup("使用方法:", "'翻译'确认输入,并输出翻译结果", "'清除'清除已有输入,清空翻译的结果", "'退出'取消,并退出App", title='', font = font, auto_close = 1) if event == "Item": sg.Popup("翻译类型:", "'输入类型' 输入的语言类型", "'输出类型' 输出的语言类型", title = '', font = font, auto_close = 1) if event == "Author": sg.Popup("作者简介:", "姓名:XXXXXX", "Wechat:XXXXXX", "E-mail:XXXXXX@qq.com", title = '', font = font, auto_close = 1)window.close()
windows.read()可以理解为监听,分别有事件event,返回值values。
while循环,当事件为空或者为“退出”是=时,结束循环,并退出。
Popup为消息提示弹窗,可以作为警告,提示,再确认的交互界面。
到这里,整个项目就已经完成了,涉及到的一些基础技能,还需要一点功力,好了,今天的分享就到这里,后续会更新如何使用pyinstaller进行打包分发使用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23