
作者:小K
来源:麦叔编程
❝
如果我们在写Python代码的时候需要把多个字典合并,那么我们将如何使用代码去实现呢?
❞
origin_dct = {"Maishu":"python", "Kevin":"java", "Jason":"PHP"}
new_dct = {"Garvey":"CSS"}
for k, v in origin_dct.items():
new_dct[k] = v
print(new_dct)
代码运行结果:
{'Garvey': 'CSS', 'Maishu': 'python', 'Kevin': 'java', 'Jason': 'PHP'}
origin_dct = {"Maishu":"python", "Kevin":"java", "Jason":"PHP"}
new_dct = {"Garvey":"CSS"}
dct = dict(new_dct, **origin_dct)
print(dct)
代码运行结果:
{'Garvey': 'CSS', 'Maishu': 'python', 'Kevin': 'java', 'Jason': 'PHP'}
origin_dct = {"Maishu":"python", "Kevin":"java", "Jason":"PHP"}
new_dct = {"Garvey":"CSS"}
new_dct.update(origin_dct)
print(new_dct)
代码运行结果:
{'Garvey': 'CSS', 'Maishu': 'python', 'Kevin': 'java', 'Jason': 'PHP'}
origin_dct = {"Maishu":"python", "Kevin":"java", "Jason":"PHP"}
new_dct = {"Garvey":"CSS"}
dct = dict(list(origin_dct.items()) + list(new_dct.items()))
print(dct)
代码运行结果:
{'Maishu': 'python', 'Kevin': 'java', 'Jason': 'PHP', 'Garvey': 'CSS'}
以上四种方法都是使用函数进行合并的,看上去都不太简便。
使用运算符合并的话,代码会更直观,对读写的人都更友好。
origin_dct = {"Maishu":"python", "Kevin":"java", "Jason":"PHP"}
new_dct = {"Garvey":"CSS"}
dct = origin_dct | new_dct
print(dct)
代码运行结果:
{'Maishu': 'python', 'Kevin': 'java', 'Jason': 'PHP', 'Garvey': 'CSS'}
❝
使用这种方式合并字典是不是很Python?不着急,合并运算符“|”在字典中还有另一种使用方法。
❞
上面使用合并运算符之后,会生成一个新的字典对象。
那么如果我只是单纯的想把合并结果更新到已存在的字典对象中呢?
类似于列表的append方法,或 x += 1操作。
origin_dct = {"Maishu":"python", "Kevin":"java", "Jason":"PHP"}
new_dct = {"Garvey":"CSS","Maishu":"Go"}
origin_dct |= new_dct
print(origin_dct)
代码运行结果:
{'Maishu': 'python', 'Kevin': 'java', 'Jason': 'PHP', 'Garvey': 'CSS'}
使用|=可以轻松实现。
还记得|运算符在Python的哪个内容中有出现吗?
| 按位或运算符,属于位运算符。
在某些场合|也会被用来做“或”逻辑运算符,例如在正则中。
当然做合并操作的时候只有在碰到字典类型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26