京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:Python进阶者
来源:Python爬虫与数据挖掘
前几天在Python黄金交流群有个叫【安啦!】的粉丝问了一个Python正则表达式提取数字的问题,这里拿出来给大家分享下,一起学习下。
代码截图如下:
可能有的粉丝不明白,这里再补充下。下图是她的原始数据列,关于【工作经验】列的统计。
现在她的需求是将工作年限提取出来,用于后面的多元回归分析。
这里提供四个解决方法,感谢【Python进阶者】和【月神】提供的方法。前面两种是【Python进阶者】的,后面两个是【月神】提供的,一起来学习下吧!
方法一
代码如下:
def work_year(y): y = y.strip() if y == '无需经验': return 0 elif y == '在校生/应届生': return 0 elif '-' in y and '年经验' in y:
low_experience = re.findall(re.compile('(d*.?d+)'), y)[0]
high_experience = re.findall(re.compile('(d?.?d+)'), y)[1]
s = round((float(low_experience) + float(high_experience)) / 2, 0) return s elif '年经验' in y or '年以上经验' in y:
year = re.findall(re.compile('^(d+)'), y)[0] return year else: return y
df['new']=df['工作经验'].apply(work_year)
df.head()
运行结果如下图所示:
方法二
代码如下:
def work_year(y): if y == '无需经验': return 0 elif y == '在校生/应届生': return 0 elif '-' in y:
low_experience = re.findall(re.compile('(d*.?d+)'), y)[0]
high_experience = re.findall(re.compile('(d?.?d+)'), y)[1]
s = round((float(low_experience) + float(high_experience)) / 2, 0) return s elif y[0].isnumeric():
year = re.findall(re.compile('^(d+)'), y)[0] return year else: return y
df['col1'] = df['工作经验'].str.strip().apply(work_year)
df
运行结果如下图所示:
方法三
代码如下:
def work_year(y): search_year = re.search(r'(d+)?-?(d+)', y) def average(args): x = tuple(args)
length = len(x) return round(sum(x) / length, 0) if search_year: return average([int(i) for i in search_year.groups() if i]) else: return 0 df['new1'] = df['工作经验'].apply(work_year)
这里只需要写一个正则表达式就行了,如果取到值就对取到的值求平均,没有就返回0。
运行结果如下图所示:
方法四
代码如下:
df['new2'] = df['工作经验'].str.extract(r'(d+)?-?(d+)').astype(float).mean(axis=1).fillna(0).round(0)
这个是用str.extract提取正则,正则表达式和上面一样,用了很多的链式方法,运行结果如下图所示:
所以代码简单了,但是可能不太好懂。
大家好,我是Python进阶者。这篇文章基于粉丝提问,盘点了csv文件中工作经验列工作年限数字正则提取的三个方法,代码非常实用,可以举一反三,文中针对该问题给出了具体的解析和代码演示,帮助粉丝顺利解决了问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20