
作者:Python进阶者
来源:Python爬虫与数据挖掘
前几天在Python黄金交流群有个叫【安啦!】的粉丝问了一个Python正则表达式提取数字的问题,这里拿出来给大家分享下,一起学习下。
代码截图如下:
可能有的粉丝不明白,这里再补充下。下图是她的原始数据列,关于【工作经验】列的统计。
现在她的需求是将工作年限提取出来,用于后面的多元回归分析。
这里提供四个解决方法,感谢【Python进阶者】和【月神】提供的方法。前面两种是【Python进阶者】的,后面两个是【月神】提供的,一起来学习下吧!
方法一
代码如下:
def work_year(y): y = y.strip() if y == '无需经验': return 0 elif y == '在校生/应届生': return 0 elif '-' in y and '年经验' in y:
low_experience = re.findall(re.compile('(d*.?d+)'), y)[0]
high_experience = re.findall(re.compile('(d?.?d+)'), y)[1]
s = round((float(low_experience) + float(high_experience)) / 2, 0) return s elif '年经验' in y or '年以上经验' in y:
year = re.findall(re.compile('^(d+)'), y)[0] return year else: return y
df['new']=df['工作经验'].apply(work_year)
df.head()
运行结果如下图所示:
方法二
代码如下:
def work_year(y): if y == '无需经验': return 0 elif y == '在校生/应届生': return 0 elif '-' in y:
low_experience = re.findall(re.compile('(d*.?d+)'), y)[0]
high_experience = re.findall(re.compile('(d?.?d+)'), y)[1]
s = round((float(low_experience) + float(high_experience)) / 2, 0) return s elif y[0].isnumeric():
year = re.findall(re.compile('^(d+)'), y)[0] return year else: return y
df['col1'] = df['工作经验'].str.strip().apply(work_year)
df
运行结果如下图所示:
方法三
代码如下:
def work_year(y): search_year = re.search(r'(d+)?-?(d+)', y) def average(args): x = tuple(args)
length = len(x) return round(sum(x) / length, 0) if search_year: return average([int(i) for i in search_year.groups() if i]) else: return 0 df['new1'] = df['工作经验'].apply(work_year)
这里只需要写一个正则表达式就行了,如果取到值就对取到的值求平均,没有就返回0。
运行结果如下图所示:
方法四
代码如下:
df['new2'] = df['工作经验'].str.extract(r'(d+)?-?(d+)').astype(float).mean(axis=1).fillna(0).round(0)
这个是用str.extract提取正则,正则表达式和上面一样,用了很多的链式方法,运行结果如下图所示:
所以代码简单了,但是可能不太好懂。
大家好,我是Python进阶者。这篇文章基于粉丝提问,盘点了csv文件中工作经验列工作年限数字正则提取的三个方法,代码非常实用,可以举一反三,文中针对该问题给出了具体的解析和代码演示,帮助粉丝顺利解决了问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18