
在现代信息技术时代,数据科学自学有大量的免费资源。事实上,您甚至可以从无数可用资源中设计自己的数据科学课程。虽然从课程工作中获得的知识对于打好数据科学的基础是必不可少的,但你需要记住数据科学是一个实践性很强的领域。因此,动手技能非常重要,尤其是如果你有兴趣在学术界以外的地方作为一名实践数据科学家工作的话。
本文将讨论4个重要的平台,这些平台将使您能够构建一个展示数据科学经验的投资组合。一个强大的投资组合会让你的雇主在竞争中占据优势,吸引最优秀的人才。请记住,有兴趣雇用你的雇主会要求你提供完成数据科学项目的证据。埃隆·马斯克(Elon Musk)的这句名言概括了包括数据科学在内的任何技术学科的雇主的心态:
“一般情况下,寻找能证明特殊能力的东西。我甚至不在乎某人是否毕业于大学或高中或其他什么…他们是否制造了一些真正令人印象深刻的设备?赢得一些真正艰苦的比赛?想出什么好主意了吗?解决一些非常棘手的问题?“
一个突出完成的项目、认可和奖项列表的强有力的投资组合将作为你在数据科学方面能力的证据。
在深入研究构建良好的数据科学组合的主题之前,让我们首先讨论数据科学组合重要的5个原因。
现在让我们讨论创建数据科学组合的4个重要平台。
1。GitHub
GitHub是一个非常有用的展示数据科学项目的平台。作为一个数据科学的渴望者,GitHub应该作为您在整个数据科学旅程中作为已完成项目的存储库使用的第一个平台。这些项目可以包括每周任务中的项目或顶点项目。这个平台使您能够与其他数据科学家或数据科学的渴望者共享您的代码。对雇用你感兴趣的雇主会检查你的GitHub投资组合,评估你已经完成的一些项目。因此,在GitHub上构建一个非常强大和专业的投资组合非常重要。
要建立一个GitHub投资组合,首先要做的是创建一个GitHub帐户。一旦您的帐户创建,您可以继续编辑您的个人资料。当编辑你的个人资料时,添加一个简短的传记和一张专业的个人资料图片是个好主意。您可以在这里找到一个GitHub概要文件的示例:https://GitHub.com/bot13956。
现在让我们假设您已经完成了一个重要的数据科学项目,并且希望为您的项目创建一个GitHub存储库。
创建存储库的提示:确保为存储库选择合适的标题。然后包括一个自述文件,以提供项目内容的概要。然后您可以上传您的项目文件,包括数据集、Jupyter笔记本和示例输出。
下面是一个用于机器学习项目的GitHub存储库的示例:
存储库名称:bot13956/ml_model_for_predicting_ships_crew_size
存储库URL:https://github.com/bot13956/ml_model_for_predicting_ships_crew_size
自述文件:
ML_Model_for_Predicting_Ships_Crew_Size Author: Benjamin O. Tayo Date: 4/8/2019 We build a simple model using the cruise_ship_info.csv data set for predicting a ship's crew size. This project is organized as follows: (a) data preprocessing and variable selection; (b) basic regression model; (c) hyper-parameters tuning; and (d) techniques for dimensionality reduction. cruise_ship_info.csv: dataset used for model building. Ship_Crew_Size_ML_Model.ipynb: the Jupyter notebook containing code.
您可以从示例自述文件中看到,该文件很好地概述了项目的全部内容,包括目标和目的、数据集以及包含代码的Jupyter笔记本文件。在准备存储库时,请始终记住,由于它是公共的,其他用户将可以访问它,因此您希望以易于理解的方式准备它。
2。Kaggle
Kaggle是世界上最大的数据科学社区,拥有强大的工具和资源来帮助您实现数据科学目标。Kaggle允许用户查找和发布数据集,在基于Web的数据科学环境中探索和构建模型,与其他数据科学家和机器学习工程师合作,并参加解决数据科学挑战的竞赛。在此平台上,您可以访问数据集、课程、笔记本和比赛。同样,作为一个初学者,你必须创建一个帐户,然后设置你的个人资料,包括一张个人资料图片和一个简短的个人简历。
加入Kaggle的主要目的之一是与其他数据科学专业人员建立网络。无论您是数据科学新手还是经验丰富的数据科学家,您都可以在Kaggle上找到一个合适的论坛,允许您发现内容并围绕您感兴趣的主题进行讨论。你的最终目标应该是进入并参与在这个平台上发起的数据科学竞赛。因为大多数比赛鼓励团队合作,所以与其他数据科学领域的有志之士建立网络是很重要的,他们可以作为Kaggle challenge比赛的团队成员。当您参加Kaggle竞赛时,您可以在您的公共配置文件上展示您完成的项目,包括您的数据集、Jupyter笔记本和项目报告。
3。LinkedIn
LinkedIn是一个非常强大的平台,可以展示您的技能,并与其他数据科学专业人士和组织建立联系。LinkedIn现在是发布数据科学职位和招聘数据科学家的最著名平台之一。事实上,我通过LinkedIn得到了许多数据科学方面的采访。
确保您的个人资料始终是最新的。列出你的数据科学技能集,以及你的经验,包括你完成的项目。也列出奖项和荣誉是值得的。你还想让招聘人员知道你正在积极寻找工作。此外,在LinkedIn上,您希望通过关注数据科学影响者和出版物,如KDnuggets、走向数据科学和走向人工智能,来保持最新的信息。这些公司发布关于各种主题的有趣的数据科学文章的更新,包括机器学习、深度学习和人工智能。
下面是我在LinkedIn上发帖的例子:https://www.LinkedIn.com/in/benjamin-o-tayo-ph-d-a2717511/detail/recent-activity/shares/
4。中等
Medium现在被认为是投资组合建设和网络建设发展最快的平台之一。如果您有兴趣使用这个平台来建立投资组合,第一步将是创建一个中等帐户。您可以创建免费帐户或会员帐户。对于一个免费的帐户,您每月可以访问的会员文章的数量是有限制的。一个会员帐户需要每月5美元或50美元/年的订阅费。有关成为Medium会员的更多信息,请访问以下站点:https://Medium.com/membership。
一旦您创建了一个帐户,您就可以继续创建一个配置文件。确保包括一张专业图片和一个简短的个人简历。下面是一个中等配置文件的示例:https://Medium.com/@benjaminobi。
在Medium上,与其他数据科学专业人员建立网络的一个好方法是成为追随者。您还可以关注专门针对数据科学的特定媒体出版物。两个顶级数据科学出版物是《面向数据科学》和《面向人工智能》。
在媒体上增强你的投资组合的最好方法之一是成为一名媒体作家。
写媒介文章有5个主要优点:
如果您有兴趣成为一名数据科学媒体作家,这里有一些可以让您入门的资源:
在媒体上写数据科学博客初学者指南
为您的数据科学文章选择正确的特征图像
总之,我们讨论了可以用于构建数据科学组合的4个重要平台。投资组合是展示您的技能和与其他数据科学专业人员建立网络的一种非常重要的方式。一个好的投资组合不仅能帮助你跟上这个领域的最新发展,还能提高你在潜在招聘者面前的知名度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09