京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:麦叔
来源:麦叔编程
在【#067】我们聊到了深度copy和浅度copy,如果还没看请点击文末查看。
我们有一个对象Coder(编程者),它包含昵称,编程年数,以及所会的编程语言列表:
class Coder: def __init__(self, nickname, experience_years, skills): self.nickname = nickname self.experience_years = experience_years self.skills = skills
其中skills是一个列表,里面包含至少一种编程语言。
我们创建一个对象maishu:
maishu = Coder('maishu', 15, ['Java', 'Ruby', 'Python', 'Shell', 'Swift', 'Objective-C', 'Flutter', 'JavaScript', 'R', 'C', 'C++'])
有一位麦友,他的情况和maishu很相似,除了昵称不一样。我们想要复制一份maishu对象,这样就不用重新创建了。
我给大家留了一个问题:
上面复制maishu的情况,应该用深copy还是浅copy呢?
评论区里的答案大都很调皮:
麦友@梦终空说:
浅copy! 这样复制了别人的知识我不用学习也能跟随别人一起更新!
麦友@予瑕说:
浅拷贝好啊,可以随着原数据的更新而更新!
麦说@日常磕盐说:
麦叔真是个有趣的人,我支持浅copy!
他们的回复虽然调皮,而且也是不对的(),但也指出了浅copy的好处:可以共用数据。
在上面的例子中,应该用深copy,因为每个人的技能是不同的。感谢麦友@梁显浚HinChunLeung给出正确答案。
麦友@Lonely丶Enderman还指出了浅copy可能出错的一个地方:
浅拷贝的话,如果两个对象都写了析构函数,就会报错。原理是原对象里的属性已经被释放了,浅拷贝出来的对象就会重复释放(浅拷贝成员指向原对象)。
不过在Python中很少写析构函数,基本上都是让对象自动垃圾回收的,这个问题存在的概率不大。不过理解这一点还是很重要的。只有理解比较深入的人才能理解这一点。
Python中深copy和浅copy的函数分别copy模块中的copy()和deepcopy()。
先看看浅copy的例子:
import copy class Coder: def __init__(self, nickname, experience_years, skills): self.nickname = nickname
self.experience_years = experience_years
self.skills = skills
maishu = Coder('maishu', 15, ['Java', 'Ruby', 'Python', 'Shell', 'Swift', 'Objective-C', 'Flutter', 'JavaScript', 'R', 'C', 'C++'])
guishu = copy.copy(maishu)
print(f'龟叔的名字是:{guishu.nickname}')
guishu.nickname = '龟叔' print(f'麦叔的名字是:{maishu.nickname}')
print(f'龟叔的名字是:{guishu.nickname}')
guishu.skills.append('易语言')
print(f'麦叔的技能是:{maishu.skills}')
print(f'龟叔的技能是:{guishu.skills}')
运行结果:
龟叔的名字是:maishu 麦叔的名字是:maishu 龟叔的名字是:龟叔
麦叔的技能是:['Java', 'Ruby', 'Python', 'Shell', 'Swift', 'Objective-C', 'Flutter', 'JavaScript', 'R', 'C', 'C++', '易语言'] 龟叔的技能是:['Java', 'Ruby', 'Python', 'Shell', 'Swift', 'Objective-C', 'Flutter', 'JavaScript', 'R', 'C', 'C++', '易语言']
解释一下:
再来看看深copy的例子,和上面唯一的区别就是改成调用deepcopy()函数。
import copy class Coder: def __init__(self, nickname, experience_years, skills): self.nickname = nickname
self.experience_years = experience_years
self.skills = skills
maishu = Coder('maishu', 15, ['Java', 'Ruby', 'Python', 'Shell', 'Swift', 'Objective-C', 'Flutter', 'JavaScript', 'R', 'C', 'C++'])
guishu = copy.deepcopy(maishu) #唯一改动 print(f'龟叔的名字是:{guishu.nickname}')
guishu.nickname = '龟叔' print(f'麦叔的名字是:{maishu.nickname}')
print(f'龟叔的名字是:{guishu.nickname}')
guishu.skills.append('易语言')
print(f'麦叔的技能是:{maishu.skills}')
print(f'龟叔的技能是:{guishu.skills}')
再次运行,发现maishu的技能不受guishu影响了:
龟叔的名字是:maishu 麦叔的名字是:maishu 龟叔的名字是:龟叔
麦叔的技能是:['Java', 'Ruby', 'Python', 'Shell', 'Swift', 'Objective-C', 'Flutter', 'JavaScript', 'R', 'C', 'C++'] 龟叔的技能是:['Java', 'Ruby', 'Python', 'Shell', 'Swift', 'Objective-C', 'Flutter', 'JavaScript', 'R', 'C', 'C++', '易语言']
因为它们的数据是安全独立的。
应该用哪个取决于你的实际业务需求。只要理解了它们的本质区别,就可以合理运用。
说几个要点:
其实,人生亦如此!朋友,甚至亲情之间,也要把握好边界,懂得深浅。尤其是开玩笑的时候,更要懂得深浅,很多冲突起源于玩笑。总之,懂的深浅,才能游刃有余!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20