京公网安备 11010802034615号
经营许可证编号:京B2-20210330
有哪些数据科学项目组合的想法可以让你得到这份工作?
当雇主雇佣一个数据科学家时,他们通常会寻找一个有能力为他们的业务创造收入和机会的人。编程、机器学习、统计学等知识不足以获得一份数据科学工作。您还需要一个投资组合来展示您的数据科学技能。一个全面的数据科学投资组合可以展示你的所有技能,使你有资格获得这个职位。一个解释得很好的数据科学组合应该展示你的沟通能力、协作能力、数据推理能力、主动能力和技术技能。
构建数据科学投资组合最重要的部分是找出在投资组合中添加什么。在您的数据科学投资组合中,您需要在GitHub或您的网站或博客上有一些项目。每个项目都应该有良好的结构,这样招聘经理就可以快速评估你的技能。在本博客中,我们将浏览一些应该在您的投资组合中的数据科学项目想法。
在将项目添加到投资组合之前,您需要了解应该添加哪些数据科学项目以及必须避免哪些项目。这就是我们现在将在数据科学项目组合中讨论的内容。
您应该添加那些与您的角色对齐的项目。例如,如果你要申请一个分析师职位,构建使用数据清理和讲故事的项目可能对你很有用。
你的数据科学应该包括3-5个项目,展示你在以下方面的能力:
数据清理项目
您应该添加将演示您在数据清理方面的技能的项目。找到一个杂乱的数据集,然后清理数据并执行基本分析。试着找到并处理一些非结构化的数据。您也可以通过API或web Scraping收集自己的数据。
数据可视化和讲故事项目
在您的数据科学投资组合中包括将展示您以下技能的项目:
在这里,您必须演示和解释您的代码在做什么,因此数据可视化和良好的沟通技巧非常有用。
构建端到端项目
构建端到端的项目是向你的招聘经理展示你有能力提取洞察力并将其展示给其他人的最佳方式。它表明您知道如何接收和处理数据,然后生成一些输出。
真实数据和网页搜索
您可以使用实际数据而不是预先清除的数据执行分析。数据收集、清理、准备和转换是数据科学工作的真正部分。网页刮痧也是一个伟大的方式,以获得一些有趣的数据。
尝试选择一个有趣的分析
不管你发现了什么,选择有趣的数据可能是一个很好的主意。最好的投资组合项目更多的是处理有趣的数据,而不是展示花哨的建模。
提出不包括在数据科学组合中的想法
建议你的投资组合中不要有共同的项目。在构建投资组合时,您需要远离最常见的项目想法。试着想出一些真正让你与众不同的东西。
以下是一些最常见的项目,如果您将它们包含在数据科学投资组合中,它们可能会对您造成伤害:
这些是最常见的项目,对你的伤害大于对你的帮助。您无法找到使用这些数据集将自己与他人区分开来的方法。你必须确保列出新颖的项目,以脱颖而出。
特定数据源思想
除了Facebook,Yelp,Foursquare,LinkedIn和Craigslist等一些有限制的API策略的困难想法之外,还有Reddit,Tumblr,体育,维基百科,非营利组织,大学网站等等。
一旦您有一些有趣的项目要添加到您的数据科学投资组合中,您的下一步将是以最佳的方式设置您的工作。为了增加数据科学项目的权重,您可以使用GitHub URL、写关于您的成就的博客以及使用BI工具创建仪表板。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23