
当你成为一名数据科学家时,很容易认为你完全了解这个领域,知道在这个行业中发展所需的所有主要工具和技术。然而,事实并不一定如此。事实上,数据科学的变化就像世界本身一样迅速和容易--一直如此!
当然,数据科学比以往任何时候都更加重要。不分行业,组织使用数据科学:
因此,数据科学家是负责收集、分析和发布数据集结果的专家。尽管数据科学在未来的重要性不太可能降低,但毫无疑问,随着关键度量或数据分析方法的变化,它将作为一个行业发生变化。
如果你是一名数据科学家,你必须与行业一起发展,而不是停滞不前。如果你和你的行业一起成长,你会:
就像商人需要在他们的技能组合中成长一样,数据科学家也必须在我们生活的不断变化的世界中成长。说到这里,让我们来分解一下如何在职业发展的同时发展数据科学技能。
博客圈,尤其是数据科学和类似行业,如科技或金融,比以往任何时候都更大、更强大。这对于一线数据科学家或那些使用被谈论的技术的人来说是很好的。
为什么?因为它使数据科学家能够很容易地跟上机器学习等新的发展,关注该行业如何发展,并通过阅读关于数据科学本身的博客文章来学习新的东西。
这不仅对你的职业生涯和心理健康有好处,而且对你理解数据科学作为一个专业也有好处。此外,无论你在数据科学方面有多好,你的理解至少有几个差距。
好消息:数据科学博客和发表的研究论文通常可以填补这些空白,让你对整个行业有更全面的了解。最重要的是,如果你养成了一个健康的博客习惯,你就会保持一个学习的常规,这将为你中年乃至更长的时间服务。
简而言之,写博客和阅读关于数据科学的研究论文可以帮助你保持正确的批判性思维纪律,以及撰写和阅读关于数据科学和分析的文章。
在某些情况下,及时了解新的发展可能会帮助你在申请一个更高薪的职位时成为一个更有吸引力的人。
说到申请薪酬更高的职位,所有数据科学家都应该尽可能地寻找在职业生涯和薪酬范围内进步的机会。
我们早已过去了雇员在同一家公司工作20年或更长时间的经济环境。现在,是时候做一个数据科学家雇佣军,把你的专业技能卖给支付最多的人了。
这对你的职业轨迹很好,当然,就像对你的钱包一样。但确保您始终处于数据科学领域的前沿也是很好的。如果你申请并被聘用为高薪职位,你将有更大的机会与新的数据科学技术和技术互动。
结果呢?你会成为一个更好、更全面的数据科学家,将来晋升或获得更高收入的职位也会更容易。在许多方面,积极追求新职位或晋升是一个滚雪球效应,申请新工作变得更容易,你追求这种策略的时间越长,你就越成功。
虽然有一个主要的职业重点或目标很重要,但列出一个你可以在空闲时间做的副业项目清单也很重要。
让我们面对现实吧:大多数数据科学工作并不是那么有趣,尤其是如果你只是为了拿薪水而工作的话。但是,许多数据科学家最初是因为对数据科学的热情而进入这个领域的。
您可以通过开发应用程序、在Statista上分析数据集等辅助项目来保持对该领域的热情,并享受自己的乐趣。
例如,根据最近的一项调查,62%的受访者更喜欢用一款应用来管理他们的投资。那么,有谁能比像你这样的数据科学家更好地开始开发一个以数据为中心的投资应用程序完美地适合这些人的愿望呢?
从上面的例子中你可以看到,边项目也是建立投资组合的好机会,你也可以利用这些投资组合获得高薪职位。副业项目经常给你机会,以传统职位所没有的方式来展示你的创造性数据科学肌肉。
最后,通过使用在线资源练习数据科学来保持你的技能敏锐和准备就绪。互联网提供了一个充满挑战的机会来考验你的技能,例如:
更好的是,一些在线挑战附带了证书,你可以把这些证书放在简历或LinkedIn个人资料中。再一次,完成这些挑战并获得任何相关证书可以让你成为一个更有吸引力的职位,当你的梦想职位出现时。
总而言之,作为一名数据科学家的成长比以往任何时候都重要,尤其是当新的专业人员进入工作队伍并成为你的竞争对手时。按照上面的建议,你将保持一个目光敏锐、思维前瞻的数据科学家,对你所在领域的新技术和发展有充分的了解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05