京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:Python进阶者
来源:Python爬虫与数据挖掘
问题:想向大佬们求教个问题,如果我有这样的需求,如何完成:
1、将A文件中名为a的sheet和B文件中名为b的sheet合并到一个sheet中去。
2、将文件夹下所有文件的第二张表合并。我做出来了,核心部分没有用pandas,而且逻辑比较繁琐。想求一用pandas解决的简洁方案。
问题一和问题二的思路都挺常规的,就是取对应的表格,然后进行合并即可,这里仍然使用pandas来进行实现!
问题一:将A文件中名为a的sheet和B文件中名为b的sheet合并到一个sheet中去。
这里基于之前【(这是月亮的背面)】提供的代码,我稍微做了些修改,代码如下:
# coding: utf-8 # 将A文件中名为a的sheet和B文件中名为b的sheet合并到一个sheet中去 from pathlib import Path import pandas as pd
path = r'E:PythonCrawler有趣的代码Python自动化办公将A文件中名为a的sheet和B文件中名为b的sheet合并到一个sheet中去' data_ex1 = pd.read_excel('ex1.xlsx', sheet_name='df1')
data_ex2 = pd.read_excel('ex2.xlsx', sheet_name='df2')
result = pd.concat([data_ex1, data_ex2], ignore_index=True)
result.to_excel('将A文件中名为a的sheet和B文件中名为b的sheet合并到一个sheet中去.xlsx', index=False, encoding='utf-8')
print('添加和合并完成!')
代码运行之后,会生成一个新的excel文件,如下图所示:
合并的结果如下图所示:
完成之后,我发给【有点意思】大佬看,不过这个答案勉强符合他的意思,他后来自己也写了一个代码,能满足自己的需求,这里发给大家看看。
问题二:将文件夹下所有文件的第二张表合并
这里基于之前【(这是月亮的背面)】提供的代码,我稍微做了些修改,代码如下:
# coding: utf-8 # 合并所有表格中的第二张表格 from pathlib import Path import pandas as pd
path = Path(r'E:PythonCrawler有趣的代码Python自动化办公将文件夹下所有文件的第二张表合并')
data_list = [] for i in path.glob("*.xls*"): # data = pd.read_excel(i, sheet_name='df2') data = pd.read_excel(i, sheet_name=1)
data_list.append(data)
result = pd.concat(data_list, ignore_index=True)
result.to_excel(path.joinpath('取所有excel表的df2表进行合并.xlsx'), index=False, encoding='utf-8')
print('添加和合并完成!')
代码运行之后,会生成一个新的excel文件,如下图所示:
合并的结果如下图所示:
细心的小伙伴可能发现代码中的第9行,我其实是注释了,一开始我测试的表格,命名规则很有规范,每个工作簿都有df1,df2,df3三张表格,所以在合并的时候直接指定了表名,但是这样写就会有问题,万一有个表格中没有df2工作表,这个代码肯定就会报错了,所以在【(这是月亮的背面)】大佬的指导下,使用了sheet_name=1参数,以索引来定位第二张表格,恰到好处,前提条件是你的Excel表格中必须要有第二张表格,否则就会出现下图的错误。
我是Python进阶者。本文基于粉丝针对Python处理Excel指定表格合并的提问,给出了一个利用Python基础+pandas处理的解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11