京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
作者:Amanda West
编译:Mika
【导读】
对于刚入行数据分析师来说,在工作中总会遇到各种问题。本文作者就分享了她的感受。
数据分析很酷,然而我不认为在2000年代或更早的时候,会有小孩梦想长大后成为一名数据科分析师。
对我来说,我在小时候有很多梦想,我首先想成为一名兽医,然后是公园管理员、训狗员、作家、最后是经济学家。就像当时许多小孩子想在长大后成为律师、医生或宇航员一样。
当然,目标会随着时间而改变,在今年5月份,我获得了弗吉尼亚大学的数据科学硕士学位。毕业几个月后,我找到了我的第一份工作,正式成为一名数据分析师。刚找到工作的我欣喜若狂,因为我可以把用上我所学的技能,并向我的新同行们证明自己。但现实很骨感,在我入职这半年来,我也常常感到不知所措。
下面我就跟大家分享一下,工作以来我在数据分析行业所学到的技术层面和非技术层面的教训。当然这只是我个人的经验体会,毕竟每个人的感受都会有些不同。
不到20%
我非常喜欢用R语言进行编程。当我有选择的时候,我在这份工作的编程面试中我都使用了R语言。
尽管如此,在我的日常工作中,有95%的时间我都使用了Python和终端(在VS Code中),5%的时间我会用会SQL,而R语言基本用不到了。可以说在读书期间,比起学的Python课程,我花了大半时间学习的R语言课程的实际作用要小得多。其中我学习的很多例如网络爬取、NLP、Apache Spark或Tableau等工具基本没派上用场。
这也是正常的,因为很难预料到你在实际工作中到底要做什么。
如果你是致力于用特定语言编程的人,我的建议是,尽早询问招聘人员,公司的团队主要使用什么语言。即使你 原则上可以用你选择的编程语言,如果团队使用其他语言,这将加大代码审查和整合的难度。对我来说,提升Python方面的技能让我很受用,但对于使用Scala等语言的人来说,可能就不是这种情况了。
在我刚开始使用AWS时,我还不太熟练,但如今我每天都要跟它打交道。但AWS也是出了名的产品繁多,让人很难知道针对特定的任务需要什么服务。更糟糕的是,当你搜索如何在AWS中做某事时,往往会得到好几种不同的答案。为了解决这个问题,我一直在不断学习AWS相关知识。
像谷歌云和Azure这样的服务也很受欢迎,但如果你不知道你可能会使用哪一个,说实话,我还是推荐AWS。根据数据显示,AWS在2020年新企业云应用中占76%。尽管如此,大多数公司都在一定程度上使用云服务,了解云服务的基本工作原理和基本情况是很不错的。
特别是在排除软件故障时
在学校里,我们经常会得到干净、清洗后的数据样本,以便深入研究某些具体的深层问题。但当你实际工作后,特别是公司的数据团队较小,那么你往往需要面对真实、混乱且无序的数据。
这是不妨了解一下计算机背后在做些什么,这会有很大的改观。在处理有问题的数据时,我会使用如下命令 watch -d -n 0.5 nvidia-smi 和 htop 用来追踪诸如GPU/CPU的使用和内存的使用情况。我还会用 df -h 来监控特定目录中的文件大小,以防空间超限。
我还使用tmux会话,以便同时打开多个终端窗口,并使我的工作在进入远程机器时不会断开。最后,当我找到有效的解决方案时,我仍然会在网上寻找更好的替代方案,在处理大数据集时,这可以节省几分钟到几天的处理时间。
这些只是我测试机器上限数据的几种方法,欢迎在留言区分享你的方法。
作为一个刚入行的数据科学新手,是需要持续进行学习的。你将被要求做的任务,在很多时候会会让你不知所云,这意味着你要争分夺秒地找出解决方案,解决你甚至不知道存在的错误。你需要不停的搜索,看看其他人是怎么解决的,不断学习提升自己,慢慢的你编程方面变得更好,代码库将开始在每次迭代中变得更加合理。
至少对我来说,我觉得我在第一份工作中所学到的东西和我在大学期间所学到的一样多,这出乎我的意料。
如果你所在的公司使用主流编程语言,这是有一定优势的,因为你可以多浏览下Stack Overflow等平台,这无数次帮了我的大忙。
这并不是针对数据分析方面。在我读书时,我给自己很大的压力,不像我的同龄人那样经常放松。期中考试前,我会高强度的学习整整一周,除了打印更多的练习题或补充咖啡外,我几乎不离开我的房间。在非期中考试的几周里,我会强迫自己学习到深夜,然后一大早强迫自己醒来匆匆赶去上课。
一直以来,我都认为一旦我拿到学位,我就会养成正常健康的作息。每天保证8小时的睡眠,并且阅读、锻炼、健康饮食。工作也不会觉得让人感到枯燥,因为我喜欢编程,因此我生活中的一切都会变得美好。
但是,这并没有发生。
虽然工作确实增加了我的一些生活习惯,但是如果你在大学里也会加班加点搞学习,那么在工作中你也可能是个工作狂。反过来如果你在读书时就有些懒散,那么工作后也可能会拖延。总之,要善待自己,精疲力竭是不好的,平衡是关键,这一点我还在学习中。
显然,我的一些观点有些片面。但我很高兴成为一名数据分析师,我仍然相信从更大的角度来看,我的不足和自我怀疑是值得的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15