
作者:李晓飞
来源:Python 技术
爬虫程序想必大家都很熟悉了,随便写一个就可以获取网页上的信息,甚至可以通过请求自动生成 Python 脚本[1]。
最近我遇到一个爬虫项目,需要爬取网上的文章。感觉没有什么特别的,但问题是没有限定爬取范围,意味着没有明确的页面的结构。
对于一个页面来说,除了核心文章内容外,还有头部,尾部,左右列表栏等等。有的页面框架用 div 布局,有的用 table,即使都用 div,不太的网站风格和布局也不同。
但问题必须解决,我想,既然搜索引擎抓取到各种网页的核心内容,我们也应该可以搞定,拎起 Python, 说干就干!
如何解决呢?
开始想了一个取巧的方法,就是利用工具(wkhtmltopdf[2])将目标网页生成 PDF 文件。
好处是不必关心页面的具体形式,就像给页面拍了一张照片,文章结构是完整的。
虽然 PDF 是可以源码级检索,但是,生成 PDF 有诸多缺点:
耗费计算资源多、效率低、出错率高,体积太大。
几万条数据已经两百多G,如果数据量上来光存储就是很大的问题。
不生成PDF,有简单办法就是通过 xpath[3] 提取页面上的所有文字。
但是内容将失去结构,可读性差。更要命的是,网页上有很多无关内容,比如侧边栏,广告,相关链接等,也会被提取下来,影响内容的精确性。
为了保证有一定的结构,还要识别到核心内容,就只能识别并提取文章部分的结构了。像搜索引擎学习,就是想办法识别页面的核心内容。
我们知道,通常情况下,页面上的核心内容(如文章部分)文字比较集中,可以从这个地方着手分析。
于是编写了一段代码,我是用 Scrapy[4] 作为爬虫框架的,这里只截取了其中提取文章部分的代码 :
divs = response.xpath("body//div")
sel = None
maxvalue = 0 for d in divs:
ds = len(d.xpath(".//div"))
ps = len(d.xpath(".//p")) value = ps - ds if value > maxvalue:
sel = { "node": d, "value": value }
maxvalue = value print("".join(sel['node'].getall()))
简单明了,测试了几个页面确实挺好。
不过大量提取时发现,很多页面提取不到数据。仔细查看发现,有两种情况。
再调整了一下策略,不再区分 div,查看所有的元素。
另外优先选择更多的 p,在其基础上再看更少的 div。调整后的代码如下:
divs = response.xpath("body//*")
sels = []
maxvalue = 0 for d in divs:
ds = len(d.xpath(".//div"))
ps = len(d.xpath(".//p")) if ps >= maxvalue:
sel = { "node": d, "ps": ps, "ds": ds
}
maxvalue = ps
sels.append(sel)
sels.sort(lambda x: x.ds)
sel = sels[0] print("".join(sel['node'].getall()))
经过这样修改之后,确实在一定程度上弥补了前面的问题,但是引入了一个更麻烦的问题。
就是找到的文章主体不稳定,特别容易受到其他部分有些 p 的影响。
既然直接计算不太合适,需要重新设计一个算法。
我发现,文字集中的地方是往往是文章主体,而前面的方法中,没有考虑到这一点,只是机械地找出了最大的 p。
还有一点,网页结构是个颗 DOM 树[6]
那么越靠近 p 标签的地方应该越可能是文章主体,也就是说,计算是越靠近 p 的节点权值应该越大,而远离 p 的结点及时拥有很多 p 但是权值也应该小一点。
经过试错,最终代码如下:
def find(node, sel): value = 0 for n in node.xpath("*"): if n.xpath("local-name()").get() == "p":
t = "".join([s.strip() for s in (n.xpath('text()').getall() + n.xpath("*/text()").getall())]) value += len(t) else: value += find(n, a)*0.5 if value > sel["value"]:
sel["node"] = node
sel["value"] = value return value sel = { 'value': 0, 'node': None
}
find(response.xpath("body"), sel)
通过这样改造之后,效果特别好。
为什么呢?其实利用了密度原理,就是说越靠近中心的地方,密度越高,远离中心的地方密度成倍的降低,这样就能筛选出密度中心了。
50% 的坡度比率是如何得到的呢?
其实是通过实验确定的,刚开始时我设置为 90%,但结果时 body 节点总是最优的,因为 body 里包含了所有的文字内容。
反复实验后,确定 50% 是比较好的值,如果在你的应用中不合适,可以做调整。
描述了我如何选取文章主体的方法后,后没有发现其实很是很简单的方法。而这次解决问题的经历,让我感受到了数学的魅力。
一直以来我认为只要了解常规处理问题的方式就足以应对日常编程了,可以当遇到不确定性问题,没有办法抽取出简单模型的问题时,常规思维显然不行。
所以平时我们应该多看一些数学性强的,解决不确定性问题的方法,以便提高我们的编程适应能力,扩展我们的技能范围。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20